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Towards an understanding of credit cycles: do all credit booms cause 

crises? 

Macroprudential policy is now based around a countercyclical buffer, relating 

capital requirements for banks to the degree of excess credit in the economy. We 

consider the construction of the credit to GDP gap looking at different ways of 

extracting the cyclical indicator for excess credit. We compare different 

smoothing mechanisms for the credit gap, and demonstrate that some countries 

require an AR(2) smoother whilst other do not. We embed these different 

estimates of the credit gap in Logit models of financial crises, and show that the 

AR(2) cycle is a much better contributor to their explanation than is the HP filter 

suggested by the BIS and currently in use in policy making. We show that our 

results are robust to changes in assumptions, and we make criticisms of current 

policy settings. 

Keywords: credit cycle; financial crisis; banks; macro-prudential policy; filtering 

 

1 Introduction 

This paper investigates the link between credit cycles and banking crises in order to 

shed light on the policy justification of countercyclical regulatory capital buffers. The 

contribution of credit to economic growth has been discussed for decades, following the 

McKinnon (1973) and Shaw (1973) framework of the 1970s where increased saving 

flows in a financially liberalised regime were shown to improve both the quantity and 

quality of investment. In the 1990s, endogenous growth theorists2 provided an 

alternative view of the growth-enhancing role of credit, whereby financial 

intermediaries, via risk pooling and diversification, improve innovation and 

technological progress. By the 2000s however, the benefits of increased credit flows 

                                                 

2 King and Levine, (1993); Levine (1997) 



 

 

became open to question and a cautionary view on the growth of credit evolved in 

response to the sub-prime crisis of 2007. Economists and regulators (including the Bank 

for International Settlements, BIS) have increasingly blamed rapid credit growth as a 

cause of financial instability, arguing that banks’ search for yields manifested as risky 

loan allocations and ultimately, systemic failure. This view has directed the policy 

debate on regulation, and, in a bid to curb excessive credit growth and financial 

instability, Basel III now recommends the use of countercyclical buffers based on credit 

growth as a macroprudential tool3.  

Countercyclical buffers are intended to reduce the amplification of 

procyclicality, a particular dynamic between credit and house price growth, generated 

by the banking system. During a cyclical upturn, loan volumes increase (often due to 

increased risk appetite of banks) and concurrently, this may fuel house price bubbles 

which in turn stimulate lending via raised collateral values. However, this cyclical 

causality becomes problematic when asset bubbles burst and the dynamics reverse: 

banks behave risk aversely and ration credit as non-performing loans rise, which 

depresses asset prices further4. To defend against adverse real economy effects, 

regulators in the post 2007 crisis environment advocated credit growth based 

procyclical accumulation of bank capital which could be released to counter the cyclical 

downturn: Basel III uses the gap between the credit-to-GDP ratio and its long term trend 

to calibrate the capital accumulation. While regulators recognize that the link between 

credit-to-GDP gaps and capital buffers is not mechanical, there remains consensus that 

                                                 

3 These have been in active use, for instance in the UK immediately after the BREXIT referendum. 

4 This transmission has been discussed over the last decades: described as the financial accelerator by Bernanke and 

Gertler (1989) and Bernanke et al. (1996) whilst Kiyotaki and Moore (1997) used a theoretical framework to 

show how the dynamic interaction between credit and assets prices amplify shocks to output. 



 

 

this gap is an adequate policy indicator for the build-up of vulnerabilities on the 

financial side (Drehmann and Tsatsaronis, 2014).  

Credit-to-GDP ratios represent a practical and appealing way to guide policy 

given the objective of the buffer. However, a growing literature supports the view that 

not all credit-to-GDP amplifications are “credit booms gone wrong”, underpinned by 

“reckless lending” (Freixas et al., 2015; Gorton and Ordoñez, 2016). In these cases, 

financial intermediation disseminates credit to projects whose net present values are 

likely to be positive and hence taxing via countercyclical buffers would be socially 

undesirable. Thus the distinction between credit booms associated with house price 

bubbles versus those that fund productive investment is an important policy issue since 

only the former may be associated with financial instability. In such cases, credit and 

house price cycles can cause each other, leading to the problem of procyclicality.  

In this paper, we investigate if and when credit growth leads to banking crises. 

We test the hypothesis that excessive credit- to-GDP growth causes banking crises in 14 

OECD countries during 1978 – 20165. We utilise total credit to the private nonfinancial 

sector to construct our credit-to-GDP gaps. We initially construct a (“HP filtered”) 

credit gap to mimic the BIS approach. To probe the role of credit-to-GDP dynamics in 

more depth, we recognise that a time series can be decomposed in to a trend, a cyclical 

component and a random element and estimate three additional measures, making 

specific assumptions on the functional form of the cycle: an AR(1) cycle, an AR(2) and 

a stochastic cycle. Our rationale is that, while extant studies estimate credit gaps as 

generalised residuals, by utilising specific cyclical data generating processes, we may 

                                                 

5 Country and timeframe choices are driven by data availability 



 

 

provide a better explanation of credit abnormalities in the economy and thus generate 

higher explanatory power6. 

We subject our gap-measures to an information criteria selection procedure, to 

isolate the optimal gap measure for each country7 (similarly to Macchiarelli, 2013). The 

idea that credit-to-GDP gaps differ across countries, reflecting idiosyncratic factors, is 

discussed by Drehmann et al. (2012), Grintzalis et al. (2017), and Edge and Meisenzahl 

(2011). Bassett et al. (2015), particularly note how home mortgages in the US account 

for a large share of the observed increase in the one-sided trend in the credit-to-GDP 

ratio. Hence, measures of the credit-to-GDP cycle that explicitly accommodate this 

persistency are worth exploring.  

Our filtering exercise reveals a natural “clustering” of countries into two gap-

types: countries for which AR(2) cycles are preferred (Belgium, Canada, Finland, 

France, Italy, Norway, Sweden, Spain and the US) and the remaining group (Denmark, 

Germany, Japan, the UK, and the Netherlands) where a stochastic cycle is optimal. We 

find the BIS filtering procedure (which makes no assumptions on the cyclical dynamics) 

is not selected as the optimal gap in any of our countries. 

To evaluate the credit cycles’ crisis role in generating crises, we then embed the 

“optimal” gap for each country within a logit early warning system, using 

macroeconomic and regulatory variables, including capital adequacy, liquidity and 

                                                 

6 To escape the usual criticism of HP-filtered series suffering from end-point bias (see Hamilton, 2017), we retrieve 

our “HP-filtered” series using a one-sided Kalman filter where restrictions are put on the state space 

representation of the latter. An advantage of this method is that our filter can be estimated using maximum 

likelihood (Harvey and Trimbur, 2008; Harvey, 1989). 

7 All cycles are calibrated so the financial cycle is of medium term duration, consistent with the extant literature 

(Drehmann and Tsatsaronis, 2014). 

 



 

 

property price growth, as standard controls. We also compare the efficacy of our cycle 

estimators. In the overall sample, we find that a mix of stochastic and AR2 cycles best 

describes crisis probabilities in terms of informational criteria. The AR2 cycle seems to 

apply to countries where credit growth and house prices interact and feed each other. 

Granger tests suggest in these countries, house price growth raised collateral values 

which propagated risky lending.  

As a robustness test, we vary crisis timing to check the stability of our results. 

Additionally, we use end-point observations on the cycles to confirm the robustness of 

our credit-gap effects. Again, these tests suggest that credit-to-GDP growth in itself is 

not risky, but when it combines with feedback from house prices, regulation becomes 

warranted. The policy implication of our results is that financial regulators should 

carefully identify the nature of credit growth before taxing banks in order to minimise 

social welfare losses from financial disintermediation.  

Our paper is structured as follows: section 2 reviews literature that links credit 

growth to banking vulnerabilities and the surrounding regulation. We also discuss the 

alternative filtering methodologies that are available for credit-to-GDP gap 

construction. Section 3 describes our filtering and early warning methodologies, 

including Receiver Operating Curves as information criteria. Section 4 discusses our 

data and in section 5 we present our results. Section 6 concludes.  

 

2 Credit Cycles, Bank Capital and Macro-Prudential Regulation 

For many years, the management of financial system operations was mandated 

to Central Bank control, alongside management of the currency. Avoiding financial 

crises or ameliorating their effects was an important objective up until the 1929-1933 

recession. Financial repression and the Bretton Woods fixed exchange rate system 



 

 

combined to ensure that there were no financial crises in advanced economies in the 

period from 1940 to 1972. Systemic risk appeared to have disappeared, and 

consequently, after the 1970s, Central Bankers and regulators increasingly focused on 

inflation and micro-prudential regulation. However, from 1970 to 2000, decade by 

decade, although financial crises in advanced economies became more common, they 

were still not seen as a major focus of policy: the majority of the economics profession 

became convinced that macroprudential policy8 was unneeded as systemic risk was 

either absent or unavoidable9.   

The financial crises that broke in 2007 and 2008 in the US, the UK and much of 

the Northern Hemisphere led to a re-evaluation of systemic and endogenous risk, 

driving the design of a new regulatory framework. In particular, attention was given to 

the role of credit cycles and their impacts on crisis risks. Whilst the Basel III regulatory 

architecture is still under implementation, the implications for credit growth, at least as 

far as this research is concerned, are in place. Both the quantity and quality of capital 

that individual banks must hold has increased, and systemically important banks are 

required to conserve more capital. In addition, there are two entirely new capital based 

buffers, the countercyclical buffer and conservation buffer. The conservation buffer (2.5 

percent of risk weighted assets) allows regulators to impose capital distribution 

constraints when common equity capital (i.e. high quality Tier 1 capital) falls below 

7%. These changes to core capital and the conservation buffer are micro-prudential 

                                                 

8A term probably coined by Andrew Crockett when he was the Managing Director if the BIS 

9 This view of exogenous risk not requiring regulation was put forward by Alan Greenspan when he was Chairman of 

the Federal Reserve, and given some support by the academic research summarised in Financial Crises by Allen and 

Gale (2007). 

 



 

 

(individual bank based), although it is clear that the more capital the banks hold, the less 

risk there is of a systemic crisis developing (Barrell et. al (2010)). 

The focus of this paper however, centres on the current macro-prudential 

framework which specifies a countercyclical buffer. In summary, as credit increases 

excessively, it is presumed that more potentially non-performing loans are issued and 

the balance sheets of banks face future deterioration. When macro-economic conditions 

worsen, there is a materialisation of credit risk and consequently the core capital of the 

banking system becomes compromised which curtails further lending. This creates 

solvency and liquidity risk for borrowers as their project net present values approach 

negative in the macroeconomic downturn. They exhibit even higher default rates and 

induce further reductions in bank capital. The buffer construction is therefore based on 

the assumption that this cyclical transmission between credit and asset values drives 

credit gaps and relies on results showing credit cycles to be good crisis predictors 

(BCBS 2010 a,b).  

An obvious source of this transmission is the build-up of excessively risky 

lending that is driven by house price bubbles. At least in countries where debt default 

has low costs, mortgage borrowers effectively hold put options against the bank, which 

they can exercise by defaulting when property price bubbles burst. This behaviour was 

especially apparent in the US sub-prime crisis (Reinhart and Rogoff, 2008). As bank 

capital erodes to cover the defaults, mortgage credit is further rationed and hence house 

prices continue the decline. This in turn raises the value of the put option from the 

borrower’s perspective and increases mortgage default rates further. Structural changes 

in the banking industry may exacerbate the procyclicality by incentivising increased 

lending during the upturn. Such changes may manifest as new approaches to firm 



 

 

behaviour (e.g. increased focus on shareholder value and performance based bonuses) 

or technological innovations (e.g. growth of internet banking).  

However, it is not always the case that the above stylised transmission will hold: 

asset price bubbles can arise from reasons exogenous to the banking system. Credit 

growth can also be rapid in  periods when higher lending is simply a rational response 

to profitable returns on lending. House prices for example have risen in real terms over 

decades in many countries reflecting structural changes in demographics and 

urbanisation10. Gorton and Ordonez (2016) suggest that credit booms are initiated by 

positive total factor and labour productivity shocks but only those where the shock 

dissipates quickly will transform into “bad booms”. Regulating against credit growth 

via extra capital requirements when productivity growth is high, can lead to a reduction 

in good lending for sound projects, impacting on economic output. Dell’Ariccia et. al 

(2012) note that only one third of post-1970s credit booms are associated with 

subsequent crises. Hence the output costs of regulation should be offset against the 

benefits of the reductions to crisis probabilities and the ameliorated costs of crises.   

Important long run studies such as Schularick and Taylor (2012), Jorda et. al 

(2011, 2013) and Reinhart and Rogoff (2008) examine historical data sets and wide 

groups of countries when analysing crises and cycles, as justified by the relative 

infrequence of crisis episodes and their tendency to cluster in time. Reinhart and Rogoff 

(2008) note banking crises are often associated with the growth of external debt, and 

this is supported by Karim et. al (2013) using the current account and Jorda et. al (2013) 

                                                 

10 House prices in London, for instance have been rising in real terms almost continuously for 70 years, and this may 

reflect shifting demand toward the city within a growing world economy, with assets being sold to foreign 

residents. 



 

 

who note the link between external imbalances and crises has strengthened in the last 60 

years.   

Schulerick and Taylor (2012), use a 140 year panel of 14 developed economies 

to analyse bank credit growth and crises: broad money and credit cycles grew together 

in a generally stable fashion pre-1950, and both are good predictors of financial crises, 

but post- 1950, only credit predicts crises. This reflects the break down in the relation 

between credit growth and bank deposits that resulted from financial innovations in the 

last 60 years, in particular the increasing use of nonmonetary liabilities to increase 

leverage.  Jorda, et. al (2013) examine the relation been financial crises and 200 

economic downturns in their 140 year panel, and find that post-crisis downturns are  

worse than others. However, it is not obvious from this work that credit causes financial 

crises; standard controls, including known defences of crises such as capital and 

liquidity are omitted as are drivers of credit such as house prices11. The exclusions 

reflect a paucity of data availability for such long run studies12 which means key post – 

1945 trends in house prices and bank regulation cannot be assessed for their impact on 

credit dynamics13. 

It is clear from this literature that an alternative method for analysing excessive 

credit growth should accommodate underlying output growth. The credit-GDP gap is 

therefore an obvious candidate for inclusion given the current macroprudential 

                                                 

 

12 Schularick and Taylor (2012) include stock prices in one set or regressions as these are the only asset price series 

available for such long runs. The growth in lagged nominal stock prices is insignificant in terms of explaining 

crisis probabilities whilst the first lag of real changes is significant. 

13 See also Aikman et. al (2015) and Summers (2016) who replicate the results of Schularick and Taylor (2012) but 

again, omit the control variables that we include. 



 

 

framework based on the BIS (2010a, b), Borio and Lowe (2002, 2004), Drehmann et. al 

(2010), Drehman et. al (2011) and supported by Alessi and Detken (2014). In this 

context, the role of the filter becomes crucial since the gap’s reliability (as either an 

early warning indicator or calibrator of countercyclical buffers) is contingent on the 

filter used for extraction. A common view is that financial cycles last longer than 

business cycles. Drehmann et al. (2012), for instance, examined variables across a 

number of countries and found the average duration of the financial cycle to be about 16 

years. Basset et al. (2015) suggest that some types of credit (government sponsored 

enterprises and other nonbank) are persistent well beyond business cycle frequencies, 

and are thus excluded from the extracted gap.  

Methodologies for estimating credit gaps range from statistical models that 

extract information from observed series, to those using economic priors. The most 

popular filtering techniques typically include: trends (linear; split or spline), univariate 

filters (Baxter-King or band pass,14 Hodrick-Prescott (1997); Beveridge-Nelson 

(1981)15, Kalman (see Harvey, 1989)) and economic methods (Structural VARs)16. The 

univariate filters exist in multivariate version as well, where the filter’s information set 

is conditional on a set of (exogenous) variables relevant in explaining the series long 

run behaviour.  

                                                 

14 The trend is obtained by “eliminating” the very low moving trend components and the very high frequency 

components while keeping intermediate business cycle components. 

15 This method shows how any ARIMA(p,1,q) process can be decomposed into a permanent and transitory component. 

This requires some important assumptions, i.e. the trend of a series is described by a random walk process and the error 

terms in both components are highly correlated 

16 The equilibrium is estimated based on structural assumptions about the nature of the economic disturbances. 



 

 

Among the different methodologies, the Hodrick-Prescott filter’s simplicity 

makes it an appealing estimation method for retrieving credit-to GDP gaps, based on a 

trend. The latter is extracted by introducing a weighting parameter, λ, which trades off 

goodness of fit against smoothness. However, the filter is often criticised for generating 

biased end of sample values and also because it produces series with spurious dynamics 

that do not reflect the underlying data-generating process (Hamilton, 2017; Edge and 

Meisenzahl, 2011). Additionally, its statistical formalization produces values for the 

smoothing parameter at odds with common practice, particularly at quarterly 

frequencies (Hamilton, 2017; Ravn and Uhlig, 2002). 

Alternative specifications make additional assumptions on the cycle’s functional 

form, for instance. autoregressive dynamics or stochastic cycles à la Harvey and Jaeger 

(1993) and Koopman et al. (2006). These representations can accommodate alternative 

credit dynamics with different degrees of persistency. Whereas extant policy approaches 

estimate credit gaps as generalised residuals (i.e. the difference between the actual 

credit-to-GDP ratio and its trend), by utilising specific data generating processes for the 

cycle, these alternatives may better explain business-cycle irregularities in the economy. 

They may have the added benefit of being able identify the trend while capturing (some 

of) the persistency characterizing the observed housing boom-and-bust cycle (see 

Reinhart and Rogoff, 2008; Aßmann et al., 2011). The limit to such approaches is that 

housing cycles generating long lasting recessions (booms) and considerable losses 

(gains) in output, may require different trend descriptions (Basset et al., 2015), to the 

extent that these changes are structural (Jannsen, 2010; Boysen-Hogrefe et al., 2016; 

Cerra and Saxena, 2008). 

  



 

 

3 Methodology 

3.1 Optimally Choosing Cyclical Indicators 

We initially mimic the BIS gap approach using identical parameters. In the 

standard specification of Borio and Drehmann (2011), Bank of England (2013), Borio 

and Lowe (2002; 2004), the cycle is taken as the residual or irregular component 

between the actual series and the HP filtered trend. A recursive one-sided framework is 

used, reflecting the idea that policy makers can only access information available at 

time t. However, to escape the usual criticism of HP-filtered series suffering from end-

point bias, we retrieve our one-sided HP-filtered series using a Kalman filter (as 

opposed to a Kalman smoother) using maximum likelihood (Harvey and Trimbur, 2008; 

Harvey, 1989).  This will not affect our crisis estimation as this ends well before our 

data stops. 

Harvey and Trimbur (2008) have noted how the HP filter is equivalent to the 

smoothed trend obtained from an unobserved component model of the type: 

    𝑦𝑡 =  𝜇𝑡 + 𝜖𝑡    (1.1) 

Where 

𝜇𝑡 =  𝜇𝑡−1 + 𝛽𝑡−1    (1.2) 

and           

𝛽𝑡 =  𝛽𝑡−1 + 𝜁𝑡 

The irregular and slope disturbances, 𝜀 and 𝜁, respectively, are mutually 

independent and normally and independently distributed with mean zero and variance 

𝜎2. The signal-noise ratio,  𝑞 =  𝜎𝜁
2 /𝜎𝜀

2 , plays the key role in determining how 

observations should be weighted for prediction and signal extraction. The higher is q, 

the more past observations are discounted in forecasting the future.  



 

 

The trend in eq. (1.1) is an integrated random walk. The statistical treatment of 

such unobserved component models is based on the state space form described in 

Harvey (1989). For quarterly data, Hodrick and Prescott (1997) proposed a value of q = 

1/1600, where 1600 is referred to as the smoothing constant. Harvey and Jaeger (1993) 

observed that, for US GDP, the HP filter gives a very similar trend to the one produced 

by fitting an unobserved components model in which the irregular component in (1.1) is 

replaced by a stochastic cycle.  

We then estimate three additional gaps: these use the same state-space “HP-

type” representation of the trend but make additional specific assumptions on the 

functional form of the cycle. In particular, three functional forms are considered: an 

AR(1) cycle, an AR(2) and a stochastic cycle -ARMA (2,1)- à la  Harvey and Jaeger 

(1993) and Koopman et al. (2006).  

The irregular component, 𝜀 in the specification in (1.1) in fact may include both 

a pure measurement error and a cyclical component. This is the case as the specification 

above makes no assumption on the existing cycle. We thus make the assumption that 

the irregular component is made up of a pure estimation error (let us call it 𝑢𝑡) and a 

cyclical component (which we call 𝜑𝑡).      

𝜖𝑡 = 𝑢𝑡 + 𝜑𝑡 

Equation (1.1) thus becomes 

    𝑦𝑡 =  𝜇𝑡 + 𝜑𝑡 + 𝑢𝑡   (1.3) 

In order to avoid imposing a priori restrictions on the cyclical dynamics, we 

match the trend (𝜇𝑡) with the dynamics of a one-sided HP-filter (we hence use a Kalman 

filter as opposed to a two-sided filter or smoother), similar to Borio and Lowe (2002).   

For these different specifications of the cycle, 𝜑𝑡, we use the following models: 



 

 

• Model 1 - Irregular: where no explicit assumptions on the cycle are made 

(hence, the irregular or residual component is considered as a cyclical 

component, matching Borio and Lowe, 2002). 

• Model 2 - Harvey (1997): where the statistical specification of the cycle is 

given by a stochastic cycle  

• Model 3 - AR(1): where the statistical specification of the cycle is described 

by a standard order-1 autoregressive process . 

• Model 4 - AR(2): where the statistical specification of the cycle is described 

by a standard order-2 autoregressive process 

For Model 2, in particular, the stochastic cycle takes the following form 

[
𝜑𝑡

𝜑𝑡
∗] =  𝜌𝜑 [

𝑐𝑜𝑠𝜆𝑐 𝑠𝑖𝑛𝜆𝑐
−𝑠𝑖𝑛𝜆𝑐 𝑐𝑜𝑠𝜆𝑐

] [
𝜑𝑡−1

𝜑𝑡−1
∗ ] + [

𝑘𝑡
𝑘𝑡
∗]  (1.4) 

where 𝜌𝜑, in the range 0 < 𝜌𝜑 ≤ 1, is a damping factor, 𝜆𝑐 is the cycle’s 

frequency in radians, in the range, 0 < 𝜆𝑐 ≤ 𝜋; 𝑘𝑡 and 𝑘𝑡
∗ are two mutually uncorrelated 

NID disturbances with zero mean and common variance 𝜎𝑘
2. 

We subject our different cycles or gap-measures to an “optimal” selection 

procedure based on the information criteria using the results of our trend-cycle 

decomposition. This allows us to isolate the best gap measure for each country while 

remaining agnostic with respect to the cyclical component in each country. 

3.2 Logit Early Warning Systems 

In this study we look at relatively parsimonious logit models to explain crises, 

and include standard significant variables from studies such as Barrell et al (2010, 2016) 

and Karim et al (2013) which are unweighted capital, bank liquidity, house price 

growth, the current account and the credit gap. We exclude variables that are 

insignificant in wider studies, such as Claessens et al (2012) and Rose et al (2011).  



 

 

Before presenting the model, we note how we avoid misspecification and bias in 

our models. Barrell and Karim (2013) show for a group of emerging markets, country 

heterogeneity induced biases when comparing pooled versus homogenous samples (in 

that case, economies with financially constrained markets showed a strong role for 

credit growth as a crisis determinant, whereas financially liberalised economies did not). 

By focusing on OECD economies which are market based and financially developed we 

avoid heterogeneity bias. We also specify a parsimonious model and include only 

variables that have been shown to significantly affect crisis probabilities. Aside from the 

practical benefits to policy makers, this has the added advantage of reducing bias from 

over specification: Greene (2012), p 178, notes that including a variable that is 

irrelevant (i.e. not orthogonal to other regressors) will induce biases in the coefficients 

on the other included variable 

We use the cumulative logistic distribution which relates the probability that the 

dummy for crises takes a value of one to the logit of the vector of 𝑛 explanatory 

variables: 

𝑃𝑟𝑜𝑏 (𝑌𝑖𝑡 = 1) = 𝐹(𝛽𝑋𝑖𝑡) =  
𝑒𝛽

′𝑋𝑖𝑡

1+𝑒𝛽
′𝑋𝑖𝑡

 (1.5) 

where 𝑌𝑖𝑡 is the banking crisis dummy for country 𝑖 at time 𝑡, 𝛽 is the vector of 

coefficients, 𝑋𝑖𝑡 is the vector of explanatory variables and 𝐹(𝛽𝑋𝑖𝑡) is the cumulative 

logistic distribution. 

The log likelihood function which is used to obtain actual parameter estimates is 

given by: 

𝐿𝑜𝑔𝑒𝐿 = ∑ ∑ [(𝑌𝑖𝑡 log𝑒 𝐹(𝛽
′𝑋𝑖𝑡)) + (1 − 𝑌𝑖𝑡)𝑙𝑜𝑔𝑒 (1 − 𝐹(𝛽′𝑋𝑖𝑡))] 

𝑇
𝑡=1  𝑛

𝑖=1 (1.6) 



 

 

3.3 Choosing between Logit models 

There are several criteria that are available to identify the best logit early 

warning specification. The simplest is the Akaike information criterion which is the 

standard goodness of fit measure that trades-off against overfitting. However, this does 

not evaluate the predictive ability of the model. For early warning systems, the 

predictive power of independent variables is as important as their significance and is a 

function of the probability threshold (0 ≤ p ≥ 1) we set when making a forecast. The 

noise to signal ratio trades-off false alarms against missed crisis calls at a given p which 

is subject to policy makers’ discretion. A better global measure, based on radar 

technology investigations, uses the entire set of the thresholds. These Receiver 

Operating Characteristics (ROCS) and the associated Area Under the ROC (the 

AUROC) have been used in the banking crisis context by Schularick and Talylor, 2012, 

Giese et. al, 2014 and Barrell et al. 2016. The ROC curve for each logit model plots a 

function of false alarms against missed calls for all p values and the integral, the 

AUROC, is used to select the best model in terms of predictive ability. The intuition is 

that an AUROC of 50% implies the model is unable to outperform a random coin toss 

in terms of predicting crises and thus the higher the AUROC, the better the model. 

 

4. Data 

Our models use data for 14 OECD countries17 during 1978 – 2016. Regressions 

use data from 1978-2013, with the remaining three years being retained for out-of-

sample forecasting. We use the same variables as Barrell, Davis, Karim and Liadze 

                                                 

17 Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Spain, Sweden, UK 

and US. 



 

 

(2010): unweighted bank capital adequacy (bank capital/total bank assets), bank 

liquidity ratios (liquidity as a proportion of total bank assets) and real house price 

growth. We also add the current account as a driving variable, as in Karim et al (2013).  

The unweighted bank capital variable primarily comes from the OECD Consolidated 

Banking Statistics Database but missing values are supplemented using IMF/World 

Bank data and Norwegian and Swedish Central Bank sources. Liquidity data is drawn 

from the IMF’s International Financial Statistics Database and national central banks, as 

are the data on the current account as a percent of GDP.  Real house price growth and 

credit growth data are obtained from the BIS which publishes the time series used for its 

own gap estimations.  

The timing and duration of crises are subjective to an extent, although work by 

Demirguc and Detragiachi (1998) set initial rules to identify systemic episodes: the 

proportion of non-performing loans to total banking system assets > 10%, or the public 

bailout cost >2% of GDP, or systemic crisis caused large scale bank nationalisation, 

alternatively bank runs were observed and if not, emergency government intervention 

was sustained. They focused on the 1997 Asian crises, but post-sub Prime it was 

recognised that revisions to international crisis episodes were required. As a result, 

subsequent work by the World Bank and IMF has updated the dating of crises, albeit 

using a more restrictive set of criteria and in combination, the two sources allow us to 

consistently estimate up to 2013, as all crises after 2007 were severe.  

To construct our binary banking crisis dummy we use the World Bank Crisis 

Database covering 1974-2002, (Caprio et al ., 2003) as well as Laeven and Valencia 

(2013) for the subsequent crises. The former have crises in Canada (1983), Denmark 

(1987), the US (1988), Italy and Norway (1990), Finland, Sweden and  Japan (1991), 

France (1994), and the UK (crises in 1984, 1991 and 1995).  



 

 

Laeven and Valencia (2013) classified Belgium, Denmark, France, Germany, 

the Netherlands, Spain and Sweden in crisis by 2008 and the US and UK in 2007. The 

authors treat the 2008 crisis in the US and the UK as a continuation of 2007 crisis, while 

we treat it as separate crises since 2008 was induced by the collapse of Lehman 

Brothers. These dating criteria underpin our results which we present in the next 

section.  

 

 5. Results 

We first present the results of our filtering exercises and then discuss the 

performance of the alternative gap measures when embedded in our logit models. 

5.1 Optimal Filters 

We describe the results for our filtering process in Table 1. For each country we 

undertake four filtering exercises, and in each case we report four information related 

diagnostic tests, the log likelihood, the Schwartz Criteria, the Hannan-Quinn and the 

Aikake Information Criteria. In 13 of the countries all four criteria point to a single 

cyclical process being optimal, with only the Netherlands showing a conflict, with three 

indicating that the Harvey (1997) smoother is optimal, and one, the Schwartz criterion, 

suggesting an AR(1) process is to be preferred. The AR(2) process is optimal in 

Belgium, Canada, Finland, France, Italy, Norway, Sweden, Spain and the US, whilst the 

Harvey (1997) is optimal in Denmark, Germany, Japan, the UK, and we allocate the 

Netherlands to this group as well.  

Insert Table 1 here 

 



 

 

5.2 Logit Results 

We report the results for the crisis logits in Table 2, and in each case we include 

one lag on credit growth, capital, liquidity and the current account. House prices are 

lagged by three periods, consistent with the Early Warning model of Barell et al. (2010). 

Within this model, we embed our variables of interest: credit growth and cyclical 

indicators for the credit to GDP gap. We choose the current version of this indicator 

because it is a smoothing process almost entirely dependent on past data, and hence it 

can be used in an Early Warning System as it is available in real time (at the current 

period). We report five logits, and in each case we also summarise the information 

content of the logit with the AUC at the bottom of the column.   

Insert Table 2 here 

Our previous exercise has been to identify the optimal cycle to individual 

countries, and we use these in the first logit (column 1; table 2), with nine countries 

taking the AR(2) cycle as an optimal indicator of the credit to GDP gap and five taking 

the Stochastic (Harvey, 1997) cycle. This “mixed cycle” variable is significant and has a 

positive sign, suggesting as the gap widens the probability of a crisis increases given the 

level of the other indicators. The presence of a significant credit to GDP gap, not 

surprisingly, is associated with a negative and insignificant coefficient on credit growth 

which remains insignificant even when the gap is excluded from the logit. Thus the gap 

indicator appears to contain all the information we need about credit in order to be able 

to predict crises 

Other coefficients are consistent with previous results in Barrell et al (2010) and 

Karim et al (2013). Capital has a negative and significant coefficient, as does liquidity, 

confirming that strong systemic defences against bank failure reduce the probability of a 

crisis occurring. Omitting these significant and relevant variables would bias the results 

for other coefficients, and would lead to a misunderstanding of factors driving crises. As 



 

 

in Karim et. al (2013), we find that recent current account deficits raise the risk of a 

crisis occurring, as does an increase in house prices three years previously. Both may 

lead to poor quality borrowing and lending, fuelled by capital inflows and inflated 

collateral values, which may increase unexpected loan defaults and cause subsequent 

bank failures and crises. 

In column 2 we split the two cycles and include them only for the countries 

where they were optimal. Although they have approximately the same coefficient as 

each other which is similar to that in the mixed regression, only the AR(2) cycle is a 

significant determinant of the probability of facing a crisis. However, including the two 

cycles separately appears to be a marginally better explanation of events (as judged by 

the AUC criterion) than that where they are constrained to have the same coefficient 

possibly because they are able to capture differences in credit dynamics across countries 

when entered separately 

In column 3 we impose the AR(2) cycle on all countries, and it has a significant 

and positive coefficient, much as in columns 1 and 2, and the other variables have 

similar coefficients. Although this is an adequate explanation of the probability of a 

crisis, our information indicator, the AUC, suggests it signalling quality is lower than 

the previous two regressions. The same is true in column 4, where we impose the 

stochastic cycle from Harvey (1997) for all countries. The coefficients are similar, but 

in general slightly less significant. This reflects that fact that it is a less good 

explanation of the probability of having a crisis than those contained in columns one to 

three, as can be judged by its lower AUC.    

Our preferred credit to GDP gaps are one component of a decomposition of the 

credit to GDP ratio into a trend, a cyclical component and a random component. It is of 

course possible to add the random component back in to the cyclical component and 



 

 

produce an unsmoothed gap. This indeed is the indicator proposed by the BIS in various 

papers. We include this Hodrick Prescott based indicator in our crisis determination 

model in column 5 (table 2). The coefficients on capital, liquidity (the defences against 

crises), current account and house price growth (the causes of crises) remain significant, 

suggesting these leading indicators of crises are well anchored. However, lagged credit 

growth and the HP credit to GDP gap are not significant and clearly contribute little to 

the explanation of crises, as can be seen by the low level of the AUC for this regression.  

It would appear that if we wish to use a credit to GDP gap to explain crises, we 

have to select the most useful indicator, with the AR(2) smoothed gap being a good tool 

in an Early Warning System for some countries, but not for others. It clearly contains 

information about bad lending, probably related to the housing market as we show 

below. However, the simple HP indicator has no information content and calibrating 

macro-prudential policy off this credit to GDP gap will do little to reduce the 

probability of an impending crisis. 

5.3 Granger Causality, Cycles and House Prices 

The observation that house prices and credit growth (related to the cyclical 

component of output) appear to be associated, can be strengthened by testing the 

relationship between them. An obvious approach involves bidirectional Granger 

causality tests between the cyclical components and house price growth. The cyclical 

component is by construction a stationary series, and our credit growth and house price 

growth series are also stationary. Hence, we can undertake regressions using pairs of 

these three variables for two sets of countries, depending on whether the AR(2) or 

stochastic cycle is preferred18. In eight of our AR2 countries (barring Italy) we would 

                                                 

18 AR(2) being optimal in Belgium, Canada, Finland, France, Italy, Norway, Sweden, Spain and the US. 



 

 

judge that crises have followed on from house prices cycles, whilst in three of our 

stochastic cycle countries (Netherlands, Denmark and Germany) we would judge that 

their crises in 2008 were more related to the international nature of their banking 

systems activities rather than their domestic house price cycles. 

We first run a regression of credit on lagged values of itself19 and test whether 

house prices add information to this time series explanation. We then run a regression of 

the credit to GDP gap on lagged values of itself and check whether house prices are 

relevant.  As we can see (tables 3 and 4), in both cases, house price growth makes a 

significant contribution. These results suggest that when house prices rise, banks lend 

more credit and also the credit gap increases on the strength of the higher collateral 

against which the private sector is able to borrow. We then reverse the question and ask 

if past credit growth trends are related to house prices and similarly, whether the 

cyclical component of credit is related to house price growth. In countries where the 

AR2 cycle best describes credit dynamics, this reverse relationship is also significant: as 

private sector credit becomes more available, it appears that the increased demand for 

housing inflates property prices further. This effect is strengthened, the more credit 

growth deviates from “fundamentals”, as indicated by trend output. However for non-

AR2 countries, the conclusion is not the same. In these countries, credit dynamics are 

different as suggested by the stochastic cycle which best describes them. This may 

explain why credit growth has limited significant impact on the growth of house prices 

and the credit gap appears to have no impact.  

Insert Table 3 and 4 here 

                                                 

19 In all Granger specifications, 3 lags are used. 



 

 

It thus appears that in Belgium, Canada, Finland, France, Italy, Norway, 

Sweden, Spain and the US, over our data period, there is a circular pattern with credit 

growth raising house prices, and rising house prices subsequently raising credit growth. 

In these circumstances bad lending is possible, as the lending inflates the value of 

collateral. Conversely, when credit growth slows, house prices begin to grow more 

slowly or even fall as refinancing of property loans becomes difficult. Collateral for 

loans thus disappears, and this is a potential cause of banking crises. In our other group 

of countries (Germany, Denmark, Japan, Netherlands and the UK), a decline in credit 

growth does not feedback on to house prices, and hence collateral is maintained for 

loans and default rates will be much lower. These results suggest there may be an 

association between crises and credit growth in some of our countries, but not in all of 

them. Hence the major policy related credit gap indicator appears to be relevant in only 

some countries but not in others. 

5.4 Robustness 

We subject our optimal logit model to three robustness tests. First we change the 

timing of a crisis, limiting them to the smaller number of systemic crisis listed in 

Laevan and Valencia (2013) 20. Crisis dating varies to an extent across studies (see 

Barrell et al. 2010) and it could be argued that our optimal model relies on a particular 

set of dates. Although Laeven and Valencia (2013) use a broader set of policy responses 

relative to Caprio et al (2003) to identify crisis episodes, two conditions must be met for 

them to be systemic: 1) Significant signs of financial distress in the banking system (as 

                                                 

20 The new set of crisis are Belgium Denmark, France, Germany, Italy, Neths, Spain and Sweden in 2008, the UK and 

US in 2007, and the US in 1988, Spain in 1978, Sweden, Norway and Finland 1991 and Japan 1997. We use the 

date range from Laevan and Valencia (2013) for these crises.  



 

 

indicated by significant bank runs, losses in the banking system, and/or bank 

liquidations, and 2) Significant banking policy intervention measures in response to 

significant losses in the banking system. They list six potential policy responses21, three 

of which must occur for condition 2) to be met. This means that their definition is more 

restrictive than that of Caprio et al (2003), and we have preferred to continue to use that 

definition of a country in a banking crisis. 

Our second robustness test repeats our initial Early Warning system estimates 

using the lagged (rather than current) value of the cyclical indicator. Although we have 

followed the Basel III suggestion that current credit dynamics affect bank lending 

behaviour, we test the possibility that utilising lagged credit gaps could change our 

conclusion. Finally, we test the out-of-sample performance of our optimal model since 

it could be that our AUROC results are a result of overfitting; in this case the model 

should not have good out-of-sample performance. For this exercise we use data from 

2014-2016.   

The new logit is given in Table 5, and we can see that our results are generally 

robust even after a large change in the dependent variable. Only our housing market 

indicator changes noticeably in size and significance. This is unsurprising as the 2008 

crisis was partly triggered by housing developments in the US, but in some of the 8 

countries that experienced a crisis in that year, house price increases had not induced lax 

lending. This was the case in Germany, for instance, where banking sector involvement 

in the US subprime market was a major driver behind banking failures.  

Insert Table 5 here 

                                                 

21 1) extensive liquidity support (5 percent of deposits and liabilities to nonresidents); 2) bank restructuring gross 

costs (at least 3 percent of GDP); 3) significant bank nationalizations; 4) significant guarantees put in place; 5) 

significant asset purchases (at least 5 percent of GDP); 6) deposit freezes and/or bank holidays. 



 

 

Changing the timing of a cyclical indicator in our Early Warning regressions has 

much less effect than it would for some other variables as the cycle indicators are 

slowly emerging filters based on past data. Moving the filter forward by one year adds 

one new observation and reduces weights on past observations, but the indicator 

emerges slowly. In Table 6 we compare AUROCs for our six models with row one 

repeating those from the previous section and row two reporting on those with a lagged 

cyclical indicator. As we can see there is little change in the overall information content, 

and we prefer to use the current indicator as it is effectively available in real time, 

unlike other indicators. 

Insert Table 6 here 

Table 7 presents the out-of-sample performance of our logit model which shows 

crisis probability forecasts have been relatively low in most countries where no 

systemic crises materialised during 2014-2016. Some exceptions are Norway, Finland 

and to a lesser extent, Sweden in 2014 and 2015, which may be due to a change in the 

definition of liquidity by the central banks. This is also likely to influence results in 

Canada, although in most countries, the unprecedented quantitative easing will be an 

issue. In general, our model performs well out-of-sample with the vast majority of 

countries having no crisis calls in 2016. 

Insert Table 7 here 

  



 

 

6. Conclusion 

To test the hypothesis that excessive credit- to-GDP growth causes banking 

crises in 14 OECD countries during 1980 – 2013, we construct an HP credit gap to 

mimic the BIS approach. We then estimate three additional gaps, making additional 

specific assumptions on the functional form of the cycle: an AR(1) cycle, an AR(2) and 

a stochastic cycle à la Harvey and Jaeger (1993) and Koopman et al. (2006). These 

representations are designed to accommodate alternative cycle processes. The AR(2) 

and the stochastic cycle are naturally calibrated so the financial cycle is of medium term 

duration, consistent with the extant literature (Drehmann and Tsatsaronis, 2014).  

We subject our gap measures to an optimal selection procedure based on the 

information criteria using the results of our trend-cycle decomposition, which allows us 

to isolate the best gap measure for each country. The results of the filtering exercise 

point out that there exist a natural statistical “clustering” of countries into two gap-

types: countries for which a AR(2) is optimal (Belgium, Canada, Finland, France, Italy, 

Norway, Sweden, Spain and the US), and a remaining group (Germany, Denmark, 

Japan, Netherlands, UK) where a stochastic cycle is preferred.  

The three cycle indicators are then embedded in a logit model in order to 

estimate their crisis prediction strength. Our logit early warning system utilises standard 

data on banking crisis, macroeconomic and regulatory control variables, including 

capital adequacy, liquidity, the current account and property price growth. We find that 

a mix of stochastic and AR2 cycles best describes crisis probabilities in terms of 

AUROCs. The AR2 cycle seems to apply to countries where credit growth and house 

prices interact and feed each other. Granger tests suggest in these countries, house price 

growth raised collateral values which propagated risky lending. Our conclusions are 



 

 

robust to changes in crisis timing, the use of lagged credit gaps and out-of-sample 

testing. 

We conclude that credit growth is sometimes a good indicator of potential 

problems but note that this is restricted to cases where excessive lending fuels a cycle of 

rising housing prices and hence collateral which in turn propagates further credit 

growth. This transmission mechanism appears to be captured by only one of the four 

gap measures. Hence, we suggest that the most commonly used indicators cannot 

provide useful policy rules since they do not detect financial vulnerabilities. This result 

contrasts with the prevailing view that excessive credit growth (defined by a different 

gap measure) requires banks to hold excess regulatory capital. In particular, Basel III 

uses the “HP-filtered” gap between the credit-to-GDP ratio and its long term trend to 

guide policy in setting countercyclical capital buffers.  We call this conclusion in to 

question and suggest that it is urgent that regulators change their view of how to 

measure and respond to the credit to GDP gap. 

Credit-to-GDP ratios clearly represent a practical and appealing way to guide 

policy given the objective of the buffer. However, a growing literature supports the 

view that not all credit-to-GDP amplifications are “credit booms gone wrong”, 

underpinned by “reckless lending” (Schularick and Taylor, 2012; Gorton and Ordoñex, 

2016). In these cases, financial intermediation disseminates credit towards productivity 

gains as opposed to risky lending, and hence taxing via countercyclical buffers would 

be socially undesirable. Hence, these types of credit cycle are unlikely to display high 

crisis prediction power.  

Our results suggest that credit-to-GDP growth per se is not risky but that credit 

booms driven by house price acceleration require dampening. The policy lesson that we 

derive from this exercise is that financial regulators should carefully identify the nature 



 

 

of credit growth before taxing banks in order to minimise social welfare losses from 

financial disintermediation. 
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Table 1. Comparing Filters for the Credit to GDP gap  

 

Model T p 

log-

likelihood SC HQ AIC   Model T p 

log-

likelihood SC HQ AIC 

CANADA               JAPAN             

Irregular 140 1 -291.020 4.1927 4.1803 4.1717   Irregular 140 1 -389.841 5.6045 5.592 5.5834 

Harvey (1997) 140 3 -92.165 1.4225 1.3851 1.3595   Harvey (1997) 140 3 -122.174 1.8512* 1.8138* 1.7882* 

AR(1) 140 2 -99.776 1.496 1.471 1.4539   AR(1) 140 2 -134.405 1.9907 1.9657 1.9486 

AR(2) 140 4 -86.879 1.3823* 1.3324* 1.2983*   AR(2) 140 4 -132.416 2.0328 1.983 1.9488 

BELGIUM               NETHERLANDS             

Irregular 140 1 -309.420 4.4556 4.4431 4.4346   Irregular 140 1 -287.964 4.1491 4.1366 4.1281 

Harvey (1997) 140 3 -106.908 1.6331 1.5957 1.5701   Harvey (1997) 140 3 -109.527 1.6706 1.6331* 1.6075* 

AR(1) 140 2 -109.501 1.6349 1.6099 1.5929   AR(1) 140 2 -111.758 1.6671* 1.6422 1.6251 

AR(2) 140 4 -94.011 1.4842* 1.4343* 1.4002*   AR(2) 140 4 -112.422 1.7472 1.6973 1.6632 

GERMANY               NORWAY             

Irregular 138 1 -282.371 4.128 4.1154 4.1068   Irregular 140 1 -367.897 5.291 5.2785 5.27 

Harvey (1997) 138 3 -40.462 0.69351* 0.65574* 0.62988*   Harvey (1997) 140 3 -195.782 2.9028 2.8654 2.8397 

AR(1) 138 2 -48.688 0.77703 0.75185 0.73461   AR(1) 140 2 -197.701 2.8949 2.87 2.8529 

AR(2) 138 4 -43.345 0.77101 0.72064 0.68616   AR(2) 140 4 -192.485 2.8910* 2.8411* 2.8069* 

DENMARK               SWEDEN             

Irregular 140 1 -393.144 5.6516 5.6392 5.6306   Irregular 140 1 -382.553 5.5003 5.4879 5.4793 

Harvey (1997) 140 3 -139.354 2.0967* 2.0592* 2.0336*   Harvey (1997) 140 3 -148.984 2.2342 2.1968 2.1712 

AR(1) 140 2 -153.955 2.27 2.245 2.2279   AR(1) 140 2 -158.826 2.3395 2.3146 2.2975 

AR(2) 140 4 -140.088 2.1424 2.0926 2.0584   AR(2) 140 4 -139.726 2.1373* 2.0874* 2.0532* 

 



 

 

 

FINLAND               SPAIN             

Irregular 140 1 -378.177 5.4378 5.4253 5.4168   Irregular 140 1 -414.176 5.9521 5.9396 5.9311 

Harvey (1997) 140 3 -134.766 2.0311 1.9937 1.9681   Harvey (1997) 140 4 -86.551 1.3776 1.3277 1.2936 

AR(1) 140 2 -145.876 2.1545 2.1296 2.1125   AR(1) 140 2 -127.113 1.8865 1.8616 1.8445 

AR(2) 140 4 -130.162 2.0007* 1.9508* 1.9166*   AR(2) 140 4 -80.390 1.2896* 1.2397* 1.2056* 

FRANCE               UK             

Irregular 140 1 -237.509 3.4283 3.4158 3.4073   Irregular 140 1 -335.455 4.8275 4.815 4.8065 

Harvey (1997) 140 3 -32.630 0.57204 0.53462 0.509   Harvey (1997) 140 3 -112.320 1.7105* 1.6730* 1.6474* 

AR(1) 140 2 -37.756 0.60997 0.58502 0.56794   AR(1) 140 2 -122.766 1.8244 1.7994 1.7824 

AR(2) 140 4 -28.109 0.54275* 0.49285* 0.45870*   AR(2) 140 4 -113.002 1.7555 1.7056 1.6715 

ITALY               US             

Irregular 140 1 -267.644 3.8588 3.8463 3.8378   Irregular 140 1 -294.751 4.246 4.2336 4.225 

Harvey (1997) 140 4 -77.501 1.2483 1.1985 1.1643   Harvey (1997) 140 3 -5.379 0.18273 0.14531 0.1197 

AR(1) 140 3 -84.611 1.3146 1.2772 1.2516   AR(1) 140 2 -35.067 0.57155 0.5466 0.52952 

AR(2) 140 4 -73.757 1.1949* 1.1450* 1.1108*   AR(2) 140 4 2.563 0.10458* 0.054684* 0.020530* 

T = no. of observations; p=parameters; SC = Schwarz criterion; HQ = Hannan-Quinn Criterion; AIC = Akaike information criterion 

 

 

 



 

 

Table 2. Choosing Cyclical credit indicators in logit models  

 

 

(1) 

Mixed 

(2) 

Split 

(3) 

AR2 

(4) 

Stochastic 

(5) 

Irregular 

Credit (-1) 

-0.013    

(0.803) 

-0.013    

(0.802) 

-0.018    

(0.726 
-0.014    

(0.786) 

-0.029    

(0.614) 

Cycle (Mixed) 

0.051    

(0.022) 

    

Stochastic Cycle  

0.051    

(0.295) 

 0.033    

(0.04) 

 

AR2 Cycle  

0.052    

(0.03) 

0.049    

(0.038) 

  

Irregular Cycle  

   0.015    

(0.493) 

Capital (-1) 

-0.347    

(0.000) 

-0.347    

(0.000) 

-0.332    

(0.000) 

-0.347    

(0.000) 

-0.301    

(0.000) 

Current Account (-1) 

-0.139    

(0.013) 

-0.139    

(0.013) 

-0.13    

(0.018) 

-0.123    

(0.022) 

-0.119    

(0.033) 

Real House Price Growth (-3) 

0.079    

(0.019) 

0.079    

(0.019) 

0.082    

(0.014) 

0.084    

(0.012) 

0.083    

(0.013) 

Liquidity (-1) 

-0.128    

(0.000) 

-0.128    

(0.000) 

-0.13    

(0.000) 

-0.126    

(0.000) 

-0.129    

(0.000) 

Area Under the Curve 

AUROC 
0.7698 0.7702 0.7648 0.7608 0.7553 

p-values in parentheses; 1978 - 2013; binary logit estimator 

 

  



 

 

Table 3. Granger Causality between Credit Growth or Cyclical Components and House 

Price Growth for Countries where the AR2 Cycle is Optimal 

 
  F-Statistic Prob.  

 REAL HOUSE PRICE GROWTH (X) →                      Credit 

Growth (Y) 14.879 0.000 

 Credit Growth (X) →  

REAL HOUSE PRICE GROWTH (Y) 2.723 0.029 

 REAL HOUSE PRICE GROWTH (X) →  

Cycle (Y) 18.002 0.000 

Cycle (X) →  

REAL HOUSE PRICE GROWTH (Y) 3.095 0.027 

. Null Hypothesis: X does not Granger Cause Y   
 

  



 

 

 

Table 4: Granger Causality between Credit Growth or Cyclical Components and House 

Price Growth for Countries where the AR2 Cycle is NOT Optimal 

 

  F-Statistic Prob.  

 REAL HOUSE PRICE GROWTH (X) →  

CREDIT GROWTH (Y) 10.666 0.000 

 CREDIT GROWTH (X) →  

REAL HOUSE PRICE GROWTH (Y) 2.211 0.068 

 REAL HOUSE PRICE GROWTH (X) →  

Cycle (Y) 2.506 0.059 

 Cycle (X) →  

REAL HOUSE PRICE GROWTH (Y) 0.884 0.449 

Null Hypothesis: X does not Granger Cause Y 

  



 

 

Table 5. Changing crisis dates 

 
Credit (-1) -0.171 (0.000) 

Cycle (Mixed) 0.146 (0.000) 

Capital (1) -0.121 (0.038) 

Current Account (-1) -0.142 (0.002) 

Real House Price Growth (-3) 0.044 (0.092) 

Liquidity (-1) -0.104 (0.000) 

p-values in parentheses; 1981 - 2013; binary logit estimator 

 

  



 

 

Table 6. Changing Lags: Impact on Area Under the Roc Curves (AUCs) 

 

Cycle Type Mixed 

AR2 + Stochastic 

Decomposition AR2 Stochastic  Irregular 

Lags on Cycle: None 0.7698 0.7702 0.7648 0.7608 0.7553 

Lags on Cycle: One 0.7573 0.7734 0.7609 0.7622 0.7491 

 

  



 

 

Table 7. Forecast Crisis Probabilities (%) 

 
Table 7: Forecast Crisis Probabilities (%) 

  2014 2015 2016   2014 2015 2016 

Belgium 3.0 6.5 5.9 Japan 0.0 0.1 0.0 

Canada 19.1 15.7 15.4 Netherlands 5.5 4.1 4.9 

Denmark 2.3 0.7 0.7 Norway 31.4 4.9 5.2 

Finland 10.5 13.3 7.0 Sweden 8.9 7.7 6.3 

France 5.7 9.3 6.6 Spain 1.6 1.2 0.9 

Germany 1.7 3.1 1.7 UK 2.2 1.6 1.1 

Italy 0.9 0.5 0.4 USA 0.0 0.0 0.1 

 


