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1 Introduction

This paper contributes to the current literature by accommodating regime switching and

structural break dynamics in a unified framework. Current regime switching models

are not suitable for capturing instability of dynamics because they assume a finite

number of states and that the future is like the past. Structural break models allow the

dynamics to change over time, however, they may incur loss in the estimation precision

because the past states cannot recur and the parameters in each state are estimated

separately. An infinite hidden Markov model (iHMM) is proposed to accommodate

both types of the models and provide much richer dynamics. This paper shows how to

identify structural breaks versus regime switching. The estimation and forecasting are

based on a Bayesian framework. The model is applied to U.S. real interest rates.

Regime switching models were first applied by Hamilton (1989). It is an impor-

tant methodology to model nonlinear dynamics and widely applied to economic data

including business cycles (Hamilton 1989), bull and bear markets (Maheu et al. forth-

coming), interest rates (Ang and Bekaert 2002) and inflation (Evans and Wachtel 1993).

There are two common features of these models. First, past states can recur over time.

Second, the number of states is finite (it is usually 2 and at most 4). In the rest of

the paper, a regime switching model is assumed to have both features. In practice,

the second feature may cause biased out-of-sample forecasts if sudden changes of the

dynamics exist.

In contrast to the regime switching models, structural break models can capture

dynamic instability by assuming an infinite or a much larger number of states at the

cost of extra restrictions. For example, Koop and Potter (2007) proposed a structural

break model with an infinite number of states. If there is a change in the data dynamics,

it will be captured by a new state. The restriction in their model is that the parameters

in a new state are different from those in the previous ones. This condition is imposed
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for estimation tractability. However, it prevents the data divided by break points from

sharing the same model parameters, and could incur some loss in estimation precision.

In the current literature, structural break models such as Chib (1998), Wang and Zivot

(2000), Pesaran et al. (2006) and Maheu and Gordon (2008) have the same feature as

Koop and Potter (2007); namely that the states cannot recur. In the rest of the paper,

a structural break model is assumed to have non-recurring states and an infinite or a

large number of states.

As we can see, regime switching and structural break dynamics have different im-

plications for data fitting and forecasting. What is missing in the current literature is

a method to reconcile them. For instance, a common practice is to use one approach

or the other in applications to specific problems. Garcia and Perron (1996) used a

three-regime Markov switching model for U.S. real interest rates while Wang and Zivot

(2000) applied a model with structural breaks in the mean and the volatility. Did the

real interest rates in 1981 have distinct dynamics or return to a historical state with the

same dynamics? Existing econometric models have difficulty answering such question.

This paper provides a solution by proposing an infinite hidden Markov model. It

incorporates regime switching and structural break dynamics in a unified framework.

Recurring states are allowed to improve estimation and forecasting precision. An un-

known number of states is embedded in the infinite dimension structure and estimated

endogenously to capture the dynamic instability. Different from the Bayesian model

averaging methodology, this model combines different dynamics in the estimation.

The proposed model builds on and extends Fox et al. (2011). They used Dirichlet

processes as the prior on the transition probabilities of an infinite hidden Markov model.

The key innovation in their work is introducing a sticky parameter that favors state

persistence and avoids the saturation of states. Jochmann (2010) applies their model

to detect the number of regimes in U.S. inflation. Their model is denoted by FSJW in
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the rest of the paper.1

The contributions of this paper are as follows. First, a second hierarchical structure

in addition to FSJW is introduced to allow learning and sharing of information for

the parameters of the conditional data density in each state. Second, I present a

methodology to identify structural breaks versus regime switching dynamics.

Lastly, the model is applied to U.S. real interest rates, which is a canonical problem

in the existing literature. Specifically, the iHMM is compared to the regime switching

model by Garcia and Perron (1996) in a Bayesian framework, the structural break model

by Wang and Zivot (2000) with minor modifications and other parametric models. The

model comparison shows that the iHMM provides the best out-of-sample forecasts and

the regime switching dynamics dominate the structural break dynamics for U.S. real

interest rates.

The rest of the paper is organized as follows. Section 2 introduces the Dirichlet pro-

cess and its stick breaking representation to make this paper self-contained. Section 3

outlines the infinite hidden Markov model and discusses its structure and implica-

tions. Section 4 sketches the posterior sampling algorithm, explains how to identify

the regime switching and the structural break dynamics, and describes the forecasting

method. Section 5 studies the dynamics of U.S. real interest rates and checks the prior

sensitivity. Section 6 concludes.

2 Dirichlet Process

The Dirichlet process was introduced by Ferguson (1973) as the extension of the Dirich-

let distribution from a finite dimension to an infinite dimension. It is a distribution of

1For an infinite hidden Markov model without regime persistence, see Teh et al. (2006). For other
nonparametric modeling methods by using the Dirichlet processes but without the hidden Markov
representation, see Bassetti et al. (2011); Griffin (2011); Griffin and Steel (2011).
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distributions and has two parameters: a shape parameter G0, which is a probability

measure over a sample space Ω, and a scalar concentration parameter α0 > 0. Ferguson

(1973) has shown that the random distribution F drawn from a Dirichlet process is

almost surely discrete, although the shape parameter G0 can be continuous. So F can

be written as F = (Θ, p), where Θ = (θ1, θ2, · · · )′, p = (p1, p2, · · · )′ with pi > 0 and
∞∑
i=1

pi = 1. Each distinct value is represented by θi and its corresponding probability is

pi, for i = 1, 2, · · · . Sethuraman (1994) found the stick breaking representation of the

Dirichlet process as follows:

Vi
iid∼ B(1, α0); pi = Vi

i−1∏
j=1

(1− Vj) (1)

θi
iid∼ G0 (2)

The notation B represents the beta distribution. This representation shows that p and

Θ are independent. The process (1), which generates p, is called the stick breaking

process and denoted by SBP(α0) in the rest of the paper.

The Dirichlet process was not widely used for continuous random variables until

West et al. (1994) and Escobar and West (1995) proposed the Dirichlet process mixture

model (DPM) as follows:

p ∼ SBP(α0); θi
iid∼ G0 for i = 1, 2, · · · ; g(y) =

∞∑
i=1

pif(y | θi). (3)

The probability density function g(y), is an infinite mixture of the probability density

functions f(y | θi)’s. If f(y | θi) is the normal distribution density function and θi

represents the mean and the variance, y is distributed as an infinite mixture of normal

distributions. Hence, continuous random variables can be modelled nonparametrically

by the DPM model. Otranto and Gallo (2002) applied this approach to detect the
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number of regimes.

The DPM models are usually applied to cross sectional data because of the exchange-

ability of the observations. However, it is not appropriate for time series modelling since

it lacks of state persistence.

3 Infinite Hidden Markov Model

The infinite hidden Markov model is introduced as follows:

π0 ∼ SBP(γ); γ > 0 (4)

πi | π0 ∼ DP (c, (1− ρ)π0 + ρδi) ; c > 0, ρ ∈ (0, 1) (5)

λ ∼ G (6)

θi
iid∼ G0(λ) (7)

st | st−1 = i ∼ πi (8)

yt | st, Y1,t−1 ∼ f(yt | θst , Y1,t−1) (9)

where i = 1, 2, · · · . The notation Y1,t = (y1, · · · , yt)′ represents the information up to

time t. δi is the degenerate distribution at integer i.

The first hierarchical structure, which governs the transition probabilities, comprises

(4) and (5). π0 is the hierarchical distribution drawn from a stick breaking process

and represents a discrete distribution with support on the natural numbers. Each

infinite dimensional vector πi is drawn from a Dirichlet process with the concentration

parameter c and the shape parameter (1 − ρ)π0 + ρδi. There are three points worth

noticing for clarity. First, because the shape parameter (1−ρ)π0 +ρδi has support only

on the natural numbers and each number is associated with a non-zero probability, the

random distribution πi can only take values on the natural numbers and each value has
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positive probability. After combining the same integer values and sorting them in the

ascending order, we can use the vector πi = (πi1, πi2, · · · )′ to represent a distribution

drawn from DP(c, (1 − ρ)π0 + ρδi). Each element πij is the probability of st taking

the integer value j given that st−1 = i. Second, by stacking πi’s, we can construct the

infinite dimensional transition matrix P = (π1, π2, · · · )′ to obtain the hidden Markov

model representation.

Lastly, if ρ is larger, πi is expected to have a larger probability at integer i. This im-

plies st, the state at time t, is more likely to be the same as st−1. Hence, ρ captures state

persistence. In the rest of the paper, ρ is referred as the sticky coefficient. Conditional

on π0 and ρ, the mean of the transition matrix E(P | π0, ρ) = (1−ρ)(π0, π0, · · · )′+ρI∞

is a convex combination of two infinite dimensional matrices. The sticky coefficient

ρ increases the self-transition probabilities by adding weights to the infinite dimen-

sional identity matrix I∞. The concentration parameter c controls how close P is to

E(P | π0, ρ).

The second hierarchical structure, which governs the parameters of the conditional

data density, includes (6) and (7). G0(λ) is the hierarchical distribution from which

the state dependent parameter θi is drawn independently; G is the prior of λ. This

structure provides a way of learning λ from past values of θi to improve estimation

and forecasting. If a new state is born, the conditional data density parameter θnew

is drawn from G0(λ). Without this hierarchical structure, the new parameter only

depends on the assumption. Pesaran et al. (2006) argued the importance of modelling

the hierarchical distribution in the presence of structural breaks. This paper adopts

their method to estimate the hierarchical distribution G0(λ).

In comparison to the iHMM, FSJW is comprised of (4)-(5) and (7)-(9). The stick

breaking representation of the Dirichlet process is not fully exploited by FSJW, since

it has only one hierarchical structure on the transition probabilities. In fact, the stick
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breaking representation (1)-(2) decomposes the random probability measure F drawn

from a Dirichlet process into two independent parts: the probabilities are generated

from a stick breaking process and the parameter values are drawn from the shape

parameter. The iHMM takes fuller advantage of this structure than FSJW by modelling

two parallel hierarchical structures.

A common practice of setting the prior for the transition matrix of a finite Markov

switching model assumes each row of the transition matrix is drawn from a Dirichlet

distribution independently. If extending to the infinite dimension, each row πi should be

drawn from a stick breaking process. However, Teh et al. (2006) argued that this prior

may have an overparametrization problem without a hierarchical structure similar to (4)

and (5), because it precludes each πi from sharing information between each other. In

terms of parsimony, the iHMM only needs one stick breaking process for the hierarchical

distribution π0, instead of assuming an infinite number of the stick breaking processes

for the whole transition matrix P .

The iHMM is also related to the DPM model (3), because (8) and (9) imply yt |

st−1 = i, Y1,t−1 ∼
∞∑
j=1

πijf(yt | θj, Y1,t−1). In contrast to the DPM model, the mixture

probability πij is state dependent. This feature allows the iHMM to capture time

varying dynamics.

4 Estimation, Inference and Forecast

I assume the conditional density of yt follows a Gaussian AR(q) process, yt | st, Y1,t−1 ∼

N(φst,0 + φst,1yt−1 + · · · + φst,qyt−q, σ
2
st). By definition, the conditional data density

parameter is θi = (φ′i, σi)
′ with φi = (φi0, φi1, · · · , φiq)′ for i = 1, 2, · · · .

The hierarchical distribution G0(λ) in (7) is assumed as the standard conjugate
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normal-gamma distribution in the Bayesian literature (Geweke, 2009).

σ−2
i ∼ G

(χ
2
,
ν

2

)
, φi | σi ∼ N

(
φ, σ2

iH
−1
)
. (10)

By definition, the collection of the hierarchical parameters is λ = (φ,H, χ, ν). φ is a

(q + 1) × 1 vector, and H is a (q + 1) × (q + 1) positive definite matrix. χ
2
> 0 is the

scalar and ν
2
> 0 is the degree of freedom of the gamma distribution.

The prior on the collection of the hierarchical parameters λ in (6) is set as:

H ∼W(A0, a0); φ | H ∼ N(m0, τ0H
−1); χ ∼ G(

d0

2
,
c0

2
); ν ∼ Exp(ρν). (11)

H is drawn from a Wishart distribution with parameter A0, which is a (q+ 1)× (q+ 1)

positive definite matrix and the degree of freedom a0 > 0. m0 is a (q + 1) × 1 vector

representing the mean of φ, and τ0 > 0 is a scalar. χ is distributed as a gamma

distribution with the scalar d0
2

and the degree of freedom c0
2

. ν has an exponential

distribution with mean ρν .

The posterior sampling is based on Markov chain Monte Carlo (MCMC) methods.

Fox et al. (2011) showed the block sampler based on the approximation by a finite

number of states is more efficient than the individual sampler. 2 To apply the block

sampler, the iHMM is approximated by a finite but large number of states as follows:

π0 ∼ Dir
(γ
L
, · · · , γ

L

)
(12)

πi | π0 ∼ Dir ((1− ρ)cπ01, ..., (1− ρ)cπ0i + ρc, · · · , (1− ρ)cπ0L) (13)

λ ∼ G (14)

2Consistency of the approximation was proved by Ishwaran and Zarepour (2000, 2002). Ishwaran
and James (2001) compared the individual sampler with the block sampler and found the latter is
more efficient in terms of mixing.
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θi
iid∼ G0(λ) (15)

st | st−1 = i ∼ πi (16)

yt | st, Y1,t−1 ∼ N(φst,0 + φst,1yt−1 + · · ·+ φst,qyt−q, σ
2
st) (17)

where L is the maximal number of states in the approximation and i = 1, 2, · · · , L.

The approximation in (12) follows Ishwaran and Zarepour (2000), who have shown

that Dir
(
γ
L
, · · · , γ

L

)
converges to SBP(γ) as L → ∞. Notice that (13) is not an

approximation because a Dirichlet process is equivalent to a Dirichlet distribution if

its shape parameter only has support on a finite number of elements. The hierarchical

distribution G0(λ) and its prior are set as (10) and (11), respectively.

From the empirical point of view, the essence of the iHMM is not only its infinite

dimension, but also its sensible hierarchical structure of the prior. If L is large enough,

the finite approximation (12)-(17) is equivalent to the original model (4)-(9) in practice.

In the application, I check whether L is large enough to preserve the implications from

the infinite dimensionality.

4.1 Estimation

Appendix A shows the posterior sampling algorithm. The parameter space is parti-

tioned into four parts: (S, I), (Θ, P, π0), (φ,H, χ) and ν. S, I and Θ are the collections

of st, a binary auxiliary variable It and θi, respectively.3 Each part is sampled condi-

tional on the other parts and the whole data sample Y as follows:

1. Sample (S, I) | Θ, P, Y

(a) Sample S | Θ, P, Y by using the forward filter and backward sampler in Chib

(1996).

3It is an auxiliary variable for sampling π0. The details are in the appendix A.
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(b) Sample I | S by using a Polya Urn scheme.

2. Sample (Θ, P, π0) | S, I, Y

(a) Sample Θ | S, Y by using the regular linear model result.

(b) Sample π0 | I from a Dirichlet distribution.

(c) Sample P | π0, S from Dirichlet distributions.

3. Sample (φ,H, χ) | S,Θ, ν

(a) Sample (φ,H) | S,Θ by using the conjugacy of the normal-Wishart distri-

bution.

(b) Sample χ | ν, S,Θ from a gamma distribution.

4. Sample ν | χ, S,Θ with the random walk Metropolis-Hastings algorithm.

After initializing the parameter values, the algorithm is applied iteratively many

times to obtain a large sample of the model parameters. The first block of samples is dis-

carded as the burn-in samples. The rest of the samples, {S(i),Θ(i), P (i), π
(i)
0 , φ(i), H(i), χ(i), ν(i)}Ni=1,

are used for inferences as if they were drawn from the posterior distribution. Simula-

tion consistent posterior statistics are computed as sample averages. For example, the

posterior mean of φ, E(φ | Y ), is calculated by using 1
N

∑N
i=1 φ

(i).

The label switching problem associated with the mixture models is not considered

in this paper.4 Instead, I follow Geweke’s (2007) methodology by focusing on the label-

invariant statistics and ignoring label permutations during the MCMC simulations.

4.2 Identification of Regime Switching and Structural Breaks

The current literature does not study the identification of regime switching and struc-

tural breaks for infinite hidden Markov models. This paper proposes an identification

4For the label switching problem, see Celeux et al. (2000) and Frühwirth-Schnatter (2001).
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methodology to identify regime switching and structural breaks based on whether a

state is recurrent or not. Heuristically, if a state only appears for one consecutive pe-

riod, it is classified as a non-recurrent state. Otherwise, it is defined as recurrent. The

starting time of a recurrent (non-recurrent) state is identified as a regime switching

(structural break) point.

More rigorously, if there exist times t0 and t1 with t0 ≤ t1 such that st = i if and

only if t0 ≤ t ≤ t1, then state i is non-recurrent and t0 is identified as a break point.

On the other hand, if st0 6= st0−1 and t0 is not a break point, then t0 is identified as a

regime switching point.

Two issues are worth noticing for this identification criterion. First, a true path of

states from a regime switching model can have non-recurrent states because of random-

ness or a small sample size. Hence, this identification approach may label a switching

point of a regime switching model as a structural break even if the true states were

observed. However, this is simply accidental. As more data are observed, a regime

switching model will have all its states identified as recurrent. Second, the purpose

of the identification is not to decompose the infinite hidden Markov model into sev-

eral regime switching and structural break sub-models (there is no unique way even

if we wanted to), but to study the richer dynamics which allow recurrent states while

accommodating structural breaks.

4.3 Forecast and Model Comparison

Defining Ψ(i) = {S(i),Θ(i), P (i), π
(i)
0 , φ(i), H(i), χ(i), ν(i)} as one sample of the parameters

from the posterior distribution conditional on data Y1,t, the out-of-sample conditional

predictive density at time t + 1 is p(ỹt+1 | Ψ(i), Y1,t) =
L∑
j=1

π
(i)

s
(i)
t ,j

f(ỹt+1 | θ(i)
j , Y1,t),

where ỹt+1 is the random variable at time t + 1. After integrating out the model

parameters by taking the average over the posterior samples, we can obtain the pre-
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dictive density as p̂(ỹt+1 | Y1,t) = 1
N

N∑
i=1

L∑
j=1

π
(i)

s
(i)
t ,j

f(ỹt+1 | θ(i)
j , Y1,t). If replacing ỹt+1 by

the observed value yt+1, the value p̂(yt+1 | Y1,t) = 1
N

N∑
i=1

L∑
j=1

π
(i)

s
(i)
t ,j

f(yt+1 | θ(i)
j , Y1,t) is

called the predictive likelihood of yt+1. Similarly, the predictive mean is obtained as

Ê(ỹt+1 | Y1,t) = 1
N

N∑
i=1

L∑
j=1

π
(i)

s
(i)
t ,j

E(ỹt+1 | θ(i)
j , Y1,t).

This paper compares the iHMM to the existing alternative models by using the

predictive likelihood of the last 80% of the data. The predictive likelihood of a model

Mi can be decomposed as the product of successive predictive likelihoods p(Yt+1,T |

Mi, Y1,t) =
T∏

τ=t+1

p(yτ | Y1,τ ,Mi). A large value means a better out-of-sample forecasting

ability for model Mi. The overparametrization is penalized by the Bayesian method,

so the model comparison obeys Ockham’s razor.

Kass and Raftery (1995) compared model Mi and Mj by the log Bayes factor:

log(BFij) = log
p(Y1,T |Mi)

p(Y1,T |Mj)
. They suggested interpreting the evidence forMi versusMj as:

not worth more than a bare mention if 0 ≤ log(BFij) < 1; positive if 1 ≤ log(BFij) < 3;

strong if 3 ≤ log(BFij) < 5; very strong if log(BFij) ≥ 5. Geweke and Amisano (2010)

argued that the predictive likelihood comparison is more robust to the prior elicitation

than the marginal likelihood. Meanwhile, the interpretation of the log predictive Bayes

factor log(BFij | Y1,t) = log
(
p(Yt+1,T |Y1,t,Mi)

p(Yt+1,T |Y1,t,Mj)

)
is the same as the log Bayes factor if the

initial sample Y1,t is regarded as a training sample. This paper uses the predictive

likelihood for model comparison with Kass and Raftery’s (1995) criterion.

5 Application to U.S. Real Interest Rates

The dynamic stability was tested by Fama (1975), Rose (1988) and Walsh (1987).

While Fama (1975) found the ex ante real interest rate as a constant, Rose (1988)

and Walsh (1987) cannot reject the existence of an integrated component. Garcia and

Perron (1996) reconciled these results using a three-regime Markov switching model
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and found switching points at the beginning of 1973 (the oil crisis) and the middle of

1981 (the federal budget deficit) using quarterly U.S. real interest rates of Huizinga and

Mishkin (1986) from 1961Q1-1986Q3. The real interest rate dynamics in each state are

characterized by a Gaussian AR(2) process. Wang and Zivot (2000) used the same data

to investigate structural breaks and found support of four states (3 breaks) by Bayes

factors.

This paper constructs U.S. quarterly real interest rates in the same way as Huizinga

and Mishkin (1986) and extends their data set to a total of 252 observations from

1947Q1 to 2009Q4. The summary statistics are in Table 1.

5.1 Models and Priors

The iHMM uses the following prior: γ = 1, c = 10, ρ = 0.9, A0 = 0.2I, a0 = 5,m0 =

0, τ0 = 1, d0 = 1, c0 = 5 and ρν = 5. This prior is informative but covers a wide range

of the parameter space. I assume each regime has an AR(2) representation. The block

sampler uses the truncation of L = 10.5

A K-regime Markov switching model of Garcia and Perron (1996), which is denoted

by MS(K), is put in a Bayesian framework. Each regime has an AR(2) representation.

P (st = j | st−1 = i) = pij (18)

yt | st, Y1,t−1 ∼ N(φst,0 + φst,1yt−1 + φst,2yt−2, σ
2
st) (19)

The prior for the transition probabilities are set as K independent uniform Dirichlet

distributions as (pi1, · · · , piK)
iid∼ Dir(1, · · · , 1) for i = 1, · · · , K. The prior for the data

density parameters are set as a normal gamma distribution for each regime as (10). I set

χ = 5, ν = 5, H = I and φ = 0, which are the means of the aforementioned hierarchical

5L = 10 is chosen to represent a potentially large number of states and keep a reasonable amount
of computation. Some larger L’s are also tried and produce similar results.
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prior for the iHMM.

The structural break model follows Wang and Zivot (2000) with minor modifications.

The difference is that Wang and Zivot (2000) only allow the intercept and the volatility

to change, while I assume all parameters change simultaneously. Each regime has an

AR(2) representation.

P (st = i | st−1 = i) =

 p if i < K

1 if i = K
(20)

P (st = i+ 1 | st−1 = i) = 1− p if i < K (21)

yt | st, Y1,t−1 ∼ N(φst,0 + φst,1yt−1 + φst,2yt−2, σ
2
st) (22)

where i = 1, · · · , K. The prior of p is a beta distribution B(9, 1). The prior for the

data density parameters, (φi, σi), is the same as the MS(K) model.

A linear AR(q) model is applied as a benchmark for model comparison:

yt | Yt−1, φ, σ ∼ N(φ0 + φ1yt−1 + · · ·+ φqyt−q, σ
2). (23)

The prior of (φ, σ) is the same as the MS(K) and the SB(K) model, where the dimen-

sionality of φ depends on the number of lags q.

The AR(q) models with rolling windows are also estimated to control for structural

instability. The model and the prior are the same as the aforementioned AR(q) model.

The windows used are 3, 5, 10 and 20 years.

The last candidate is the Bayesian model averaging (BMA) approach. The first

BMA, denoted by BMA:MS, includes 10 Markov switching models from MS(1) to

MS(10), among which MS(1) is simply the linear AR(2) model and MS(10) is the

iHMM without the hierarchical structures. The second BMA, denoted by BMA:SB,
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includes 20 structural break models from SB(1) to SB(20). The last BMA, denoted by

BMA:MS+SB, includes the above 10 Markov switching models and 20 structural break

models.

5.2 Results

Table 2 shows the log predictive likelihoods of different models. First, the table shows

that the linear models are dominated by the nonlinear models. Second, the AR models

with a 5-year rolling window performs competitively, which support the importance

of the nonlinearity. Third, the log predictive likelihoods strongly support the Markov

switching models against the structural break models. The log predictive likelihood

of the four-regime or five-regime Markov switching model is larger than that of any

K-regime structural break model by more than 5, which is very strong evidence based

on Kass and Raftery (1995). At last, the iHMM performs the best among all models,

including the BMA approaches, even though the evidence is not strong. Since the

iHMM nests the MS(K) models, the results imply that the real interest rates are better

described by the regime switching dynamics.

To study the in-sample dynamics, the full sample is estimated by the iHMM. Fig-

ure 1 plots the posterior means of different parameters over time, including the regime

switching and structural break probabilities. There is no sign of structural breaks from

the bottom panel. Hence, the regime switching dynamics prevail, which is consistent

with Table 2’s results. Three important regimes can be visually detected: one has high

volatility and high persistence, one has low volatility and intermediate persistence and

the last one has intermediate volatility and low persistence.

Figure 2 plots the posterior mean of the cumulative number of active states over

time. A state is defined as active if it is occupied by data. The posterior mean of the

total number of active states is 3.4. Recalling that the finite approximation uses L = 10
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in the estimation, this value implies that the truncation restriction is not binding.

The clustering of the regimes is shown in Figure 3, which is the temperature plot as

in Geweke and Jiang (2011). This 2D plot is equivalent to a T ×T matrix, in which the

value of the tth row and τth column is the probability of two periods being in the same

regime, p(st = sτ | Y ). A large(small) value is represented by a dark(light) color. There

are three visible regimes. The first is associated with the very beginning of the data

period, early and mid 1980s and the very end of the data period. The second regime

occupies the longest period, which are the early 1950s, from the late 1950s to the early

1970s and from the mid 1980s to the early 2000s. The last regime is short and has

some uncertainties, which is associated with a short period around the mid 1950s, from

the early 1970s to the late 1970s and a short period around early 2000s. For the last

regime, the uncertainty comes from whether the last two episodes are associated with

the first one. It is quite certain that the last two are in the same regime from the figure,

since the color is dark for the off-diagonal block which is located at the intersection of

these two episodes. However, the color for the off-diagonal blocks, which are located at

the intersections of the first episode and the last two episodes, are gray. Because the

gray color means a probability around 0.5, loosely speaking, these three episodes have

half probability to be in one regime and half probability to be in two regimes. This

explains that the posterior mean of the total number of regimes is 3.4

Garcia and Perron (1996) found switching points at the beginning of 1973 and the

middle of 1981. From the iHMM, the probability of regime switching in 1973Q1 is 0.39,

which is consistent with their finding. From 1980Q2 to 1981Q1, the probabilities of

regime switching are 0.18, 0.13, 0.32 and 0.19, respectively. There are many uncer-

tainties in the switching point identification at these times. However, it is quite likely

that the state changed in one of these episodes, which is only slightly earlier than in

Garcia and Perron (1996). On the other hand, Huizinga and Mishkin (1986) identified
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October 1979 and October 1982 as the turning points. Probabilities of regime switching

or structural breaks in 1979Q3 and Q4 are less than 0.02 and 0.04 respectively, while

in 1982Q3 and 1982Q4 they are both less than 0.01. Thus, the iHMM supports Garcia

and Perron (1996) against Huizinga and Mishkin (1986).

As an attempt to locate potential state changing points, I define a time as a can-

didate turning point if the sum of regime switching and structural break probability

is greater than 0.3. There are 9 points in total: 1952Q1, 1952Q3, 1956Q2, 1958Q2,

1973Q1, 1980Q4, 1986Q2, 2002Q1, and 2005Q3. Among those points, 1973Q1 and

1980Q4 are consistent with Garcia and Perron (1996). Wang and Zivot (2000) found

1970Q3, 1980Q2 and 1985Q4 as structural break points. 1980Q4 and 1986Q2 are close

to their finding. However, the iHMM does not identify late 1970 as neither a break nor

a switching point, which contradicts their result.

Another interesting result is shown in Figure 4 by using the same data length as

Garcia and Perron (1996), which is from 1961Q1 to 1986Q3 with 103 observations. If

we ignore the last few data points, it is exact like the temperature plot of a structural

break model as in Geweke and Jiang (2011). A structural break model by Wang and

Zivot (2000) is indeed a good fit for this sub-sample.

5.3 Marginal Likelihood and Prior Sensitivity

For completeness, I also calculate the marginal likelihoods for different models.6 The

model with the largest marginal likelihood is the BMA:MS model (-549.0) comparing

to the iHMM(-558.3). This is because of the high marginal likelihoods for the MS(K)

models when K is large. For example, the marginal likelihood of MS(10) is -548.8.

Its dominance is clearly from the first 50 observations instead of the last 200, since the

iHMM has a larger predictive likelihood in Table 2. This is due to the fact that the initial

6It is not shown in the paper and can be requested from the author.
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samples are more sensitive to the prior elicitation. The hierarchical prior is more diffuse

than the non-hierarchical one, hence it tends to produce smaller predictive likelihoods

for the first several observations. On the other hand, the hierarchical structure is able

to learn more information from the data, so it could have better forecasting ability after

a certain training sample.

To further investigate the prior sensitivity, I focus on the inverse of the covariance

matrix of the regression coefficients H (up to a scalar σ2). If H is large, the prior

shrinks the estimates of φi’s towards the hyper-parameter φ. So I call a prior tight if

H is large and flat if it is small. The original prior of H is a Wishart W(0.2I, 5) in the

iHMM. The MS(K) model set H = I, which is the mean of the iHMM’s prior.

For the tight prior, the inverse of the covariance matrix H is set as 10I for the

MS(K) models, which means the covariance matrix of φi is divided by 10. The prior

of H in the iHMM is given by scaling A0 by 10, which means H ∼ W(2I, 5). So the

mean of the new hierarchical prior in the iHMM equals to the new value of H in the

MS(K) model. The scalar τ0 is scaled by 10 in order to compensate for the change of

the covariance matrix of φ. For a even tighter prior, H = 100I for the MS(K), and

A0 = 20I and τ0 = 100 for the iHMM.

For the flat prior, I set H = 0.1I for the MS(K) models. Correspondingly, A0 and τ0

are set as 0.02I and 0.1 for the iHMM. A even flatter prior is H = 0.01I for the MS(K)

models and A0 = 0.002I, τ0 = 0.01 for the iHMM.

Table 3 shows the marginal and predictive likelihoods for the MS(K) models and

the iHMM. In terms of marginal likelihood, the flat and the flatter prior favor the parsi-

monious MS(3) model. The MS(10) model is beaten because of a bad prior elicitation,

which is in line with Maheu and McCurdy (2009). For the tight and tighter priors, the

model with a larger number of regimes such as MS(5) or the iHMM is more acceptable.

The most important inference from Table 3 is that the iHMM always performs the
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best in the predictive likelihood. The power of the hierarchical structure resides in its

ability to learn extra information from the data. In this application, the iHMM learns

quickly and shows a superior predictive ability for the last 80% of the sample.

Another important finding is that the original prior is the most disadvantageous

prior in the sensitivity check, because, with the original prior, the predictive Bayes

factor of the iHMM against the best MS(K) model is the smallest. This finding is

positive evidence to support the robustness of the results of the model comparison.

Figure 5 monitors the evolution of the cumulative log predictive Bayes factor,

log(p(Y1,t|iHMM)

p(Y1,t|AR(2))
), which is the solid line on the top panel. The value in the end of

the line is the log Bayes factor by definition. The dashed line in the top panel repre-

sents the regime change probability. The bottom panel plots the smoothed volatility

implied by the iHMM.

The learning of the hierarchical structure can be illustrated by focusing on the high

volatility phases, which includes the beginning of the data period, early and mid 1980s

and the end of the data period. The first segment has a jump of the Bayes factor

because of the prior setting. After the jump, the Bayes factor is quite stable since there

is no structural change for the first several observations. Before the second segment,

the Bayes factor begins to fall in 1973 since a new regime is entered and the iHMM is

learning. The Bayes factor decreases mildly in the second high volatility phase, because

the iHMM is still learning the dynamic structure. Finally, the Bayes factor does not

decrease in the last phase of high volatility, since the iHMM has accumulated enough

information about the high volatility phase. For the rest of the time, the Bayes factor

is increasing, simply because the nonlinear dynamics outperform the linear dynamics

and the iHMM is able to capture the regime changes while AR(2) model can not.
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5.4 Predictive Mean

Table 4 shows the root mean square errors from different approaches. The best model

is AR(3). This could be attributed to the fact that the iHMM focuses on the overall

density forecasting instead of the point forecast.7 This is analogous to forecasting at

different horizons. A model being good at short-run forecast is not necessarily good at

long-run forecasting.

Meanwhile, we can still learn from Table 4 that the iHMM with the tighter prior

performs the best among all nonlinear models including the AR(q) models with rolling

windows. The tighter prior means that additional shrinkage hierarchical prior methods

may provide improvement in the iHMM for both density and mean prediction.

5.5 Dynamics in Each Regime

In order to check the sensitivity of the dynamics in each regime. I estimated another

two versions of the iHMM’s by assuming AR(1) and AR(3) in each regime, respectively.

The priors are the same as the original prior of the iHMM.

The marginal likelihoods for the iHMM with the AR(1) and AR(3) dynamics are

−556.8 and −552.5. Their respective predictive likelihoods are −423.0 and −420.8.

These values are close to the results of the iHMM with the AR(2) dynamics and do not

change the qualitative implications of Table 2 and 3. Again, the original setting is a

disadvantageous specification, hence the AR(1) and AR(3) results support the model

robustness.

7Pesaran et al. (2011) discuss the mean forecasting in the presence of structural instability
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6 Conclusion

This paper proposes to apply an infinite hidden Markov model (iHMM) to integrate

current Markov switching and structural break models in a single, coherent frame-

work. Two parallel hierarchical structures, one governing the transition probabilities

and the other governing the parameters of the conditional data density, are imposed

for parsimony and to improve forecasts. A methodology for the identification of regime

switching and structural breaks is proposed.

The application to U.S. real interest rates shows the iHMM is robust to model un-

certainty and provides superior out-of-sample forecasts than existing Markov switching

and structural break models. The second hierarchical structure is robust to prior elici-

tation and able to learn extra information from the data quickly. From both the density

forecasts and the posterior probabilities of regime switching and structural breaks, U.S.

real interest rates are better described by a regime switching model.

A Block Sampling

A.1 Sample (S, I) | Θ, P, Y

S | Θ, P, Y is sampled by the forward and backward smoother in Chib (1996).

I is introduced to facilitate the π0 sampling. From (12) and (13), the filtered

distribution of πi conditional on St = (s1, · · · , st) and π0 is a Dirichlet distribution:

πi | St, π0 ∼ Dir
(
c(1− ρ)π01 + n

(t)
i1 , · · · , c(1− ρ)π0i + cρ+ n

(t)
ii , · · · , c(1− ρ)π0L + n

(t)
iL

)

where n
(t)
ij is the number of {τ | sτ = j, sτ−1 = i, τ ≤ t}. After integrating out πi,

the conditional distribution of st+1 given St and π0 is p(st+1 = j | st = i, St, π0) ∝

c(1− ρ)π0j + cρδi(j) + n
(t)
ij
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Construct a variable It with a Bernoulli distribution

p(It+1 | st = i, St, π0) ∝


cρ+

L∑
j=1

n
(t)
ij if It+1 = 0,

c(1− ρ) if It+1 = 1.

and the conditional distribution

p(st+1 = j | It+1 = 0, st = i, St, β) ∝ n
(t)
ij + cρδi(j),

p(st+1 = j | It+1 = 1, st = i, St, β) ∝ π0j.

This construction preserves the same conditional distribution of st+1 given St and

π0. To sample I | S, use the Bernoulli distribution It+1 | st = i, st+1 = j, π0 ∼

Ber(
c(1−ρ)π0j

n
(t)
ij +cρδi(j)+c(1−ρ)π0j

).

A.2 Sample (Θ, P, π0) | S, I, Y

After sampling I and S, write mi =
∑
st=i

It. By construction, the conditional posterior of

π0 given S and I only depends on I and is given by π0 | S, I ∼ Dir( γ
L

+m1, · · · , γL+mL).

This approach of sampling π0 is easier than Fox et al. (2011).

Conditional on π0 and S, the sampling of πi is given by πi | π0, S ∼ Dir(c(1 −

ρ)π01 + ni1, · · · , c(1− ρ)π0i + cρ+ nii, · · · , c(1− ρ)π0L + niL), where nij is the number

of {τ | sτ = j, sτ−1 = i}.

The sampling of Θ | S, Y uses the result of regular linear models with the conjugate

priors.

23



A.3 Sample (φ,H, χ) | S,Θ, ν

The conditional posterior is φ,H | {φi, σi}Ki=1 ∼ NW(m1, τ1, A1, a1), where K is

the number of active states. φi and σi are the parameters associated with these

states. We can derive m1 = 1

τ−1
0 +

K∑
i=1

σ−2
i

(
τ−1

0 m0 +
K∑
i=1

σ−2
i φi

)
, τ1 = 1

τ−1
0 +

K∑
i=1

σ−2
i

, A1 =

(
A−1

0 +
K∑
i=1

σ−2
i φiφ

′
i + τ−1

0 m0m
′
0 − τ−1

1 m1m
′
1

)−1

and a1 = a0 +K.

The conditional posterior of χ is χ | ν, {σi}Ki=1 ∼ G(d1/2, c1/2), where d1 = d0 +
K∑
i=1

σ−2
i and c1 = c0 +Kν.

A.4 Sample ν | χ, S,Θ

The conditional posterior of ν is p(ν | χ, {σi}Ki=1) ∝
(

(χ/2)ν/2

Γ(ν/2)

)K ( K∏
i=1

σ−2
i

)ν/2
exp{− ν

ρν
}.

A Metropolis-Hastings method is applied to sample ν, with the proposal distribution

of ν | ν ′ ∼ G( ζν
ν′
, ζν). ζν is fine tuned to produce a reasonable acceptance rate around

0.5, as suggested by Müller (1991); Roberts et al. (1997).
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Tables

Table 1: Summary statistics

mean 0.96

variance 9.91

skewness -0.76

excess kurtosis 3.60

There are 252 observations from
1947Q1 to 2009Q4 for U.S.
quarterly real interest rate.
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Table 2: Log predictive likelihoods

AR(q) q=2 q=3 q= 4

-456.5 -450.2 -455.7

rolling-AR(2) 3yr 5yr 10yr 20 yr

-440.9 -432.7 -448.1 -475.6

rolling-AR(3) 3yr 5yr 10yr 20 yr

-451.7 -436.0 -441.8 -467.9

rolling-AR(4) 3yr 5yr 10yr 20 yr

-462.4 -439.0 -444.7 -467.6

MS(K) K=3 K=4 K=5

-436.7 -427.4 -426.8

SB(K) K=3 K=4 K=5 K=10 K=15 K=20

-452.6 -454.6 -443.3 -436.8 -432.9 -430.0

BMA:MS -423.6

BMA:SB -433.1

BMA:MS+SB -423.6

iHMM -423.3

There are 252 observations from 1947Q1 to 2009Q4 for U.S.
quarterly real interest rate. The last 200 observations are used to
calculate the predictive likelihoods.
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Table 3: Robustness check for prior elicitation

MS(3) MS(4) MS(5) MS(10) iHMM

original:log ML -563.7 -553.2 -551.9 -548.8 -558.3

original:log PL -436.7 -427.4 -426.8 -423.6 -423.3

tight:log ML -556.5 -552.5 -551.1 -553.2 -553.9

tight:log PL -430.1 -426.4 -425.1 -426.5 -422.6

tighter:log ML -572.5 -568.7 -563.9 -568.7 -550.7

tighter:log PL -437.6 -434.1 -428.9 -426.9 -420.5

flat:log ML -564.3 -567.6 -570.6 -586.5 -568.9

flat:log PL -430.0 -432.1 -434.9 -447.8 -425.6

flater:log ML -579.7 -580.5 -582.8 -600.7 -580.2

flater:log PL -439.3 -433.2 -433.0 -436.9 -431.0

There are 252 observations from 1947Q1 to 2009Q4 for U.S.
quarterly real interest rate. The last 200 observations are used to
calculate the predictive likelihoods.

31



Table 4: Root mean square error(RMSE)

AR(q) q=2 q=3 q= 4

2.31 2.26 2.39

rolling-AR(2) 3yr 5yr 10yr 20 yr

2.45 2.42 2.41 2.36

rolling-AR(3) 3yr 5yr 10yr 20 yr

2.64 2.47 2.40 2.33

rolling-AR(4) 3yr 5yr 10yr 20 yr

2.83 2.59 2.49 2.42

MS(K) K=3 K=4 K=5

2.34 2.37 2.37

SB(K) K=3 K=4 K=5 K=10 K=15 K=20

2.42 2.49 2.44 2.65 2.87 2.75

iHMM 2.45

iHMM tighter prior 2.33

There are 252 observations from 1947Q1 to 2009Q4 for U.S.
quarterly real interest rate. The last 200 observations are used to
calculate the forecasting errors.
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Figure 1: There are 252 observations from 1947Q1 to 2009Q4 for U.S. quarterly real
interest rate. The data are estimated by the iHMM and each state has Gaussian AR(2)
dynamics: yt = φst,0 + φst,1yt−1 + φst,2yt−2 + σstεt. The first panel plots the data
and the rest plots the posterior mean of different parameters: the second panel plots
the intercepts φst,0, the third panel plots the persistence parameters φst,1 + φst,2, the
fourth panel plots the conditional standard deviations σst and the last panel plots the
probabilities of regime switching and structural breaks.
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Figure 2: There are 252 observations from 1947Q1 to 2009Q4 for U.S. quarterly real
interest rate. The data are estimated by the iHMM and each state has Gaussian AR(2)
dynamics: yt = φst0 + φst1yt−1 + φst2yt−2 + σstεt. The top panel plots the data and
the bottom panel plots the posterior mean of the cumulative number of active states
(active state means it has been visited at least once).
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Figure 3: The temperature plot of the clustering of regimes by the iHMM. The data is
U.S. quarterly real interest rates from 1947Q1 to 2009Q4.
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Figure 4: The temperature plot of the clustering of regimes by the iHMM. The data
is U.S. quarterly real interest rates from 1961Q1 to 1986Q3, which is the same as in
Garcia and Perron (1996).
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Figure 5: The top panel plots the cumulative log predictive Bayes factors(solid line).
The dashed line represents the smoothed regime change probabilities implied by the
iHMM. The bottom panel plots the posterior mean of the volatilities implied by the
iHMM.
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