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Abstract—Financial option prices have experienced excessive volatility in response to the recent economic and 

financial crisis. During the crisis periods, financial markets are, in general, subject to an abrupt regime shift 

which imposes a significant challenge to option pricing models. In this context, swiftly evolving markets and 

institutions require valuation models that are capable of recognizing and adapting to such changes. Both 

parametric and non-parametric pricing models have shown poor forecast ability for options traded in late 1987 

and 2008. Surprisingly, the pricing inaccuracy was more pronounced for non-parametric models than for 

parametric models. To address this problem, we propose a modular neural network-fuzzy learning vector 

quantization (MNN-FLVQ) model that uses the Kohonen unsupervised learning and fuzzy clustering algorithms 

to classify the S&P 500 stock market index options, and thereby detect a regime shift. The results for the 2008 

financial crisis demonstrate that the MNN-FLVQ model is superior to the competing methods in regards to 

option pricing during regime shifts. 

I. INTRODUCTION 

In the summer of 2008, significant concerns mounted regarding the health of the U.S. financial 

markets and institutions. Subsequent events of September and October of that year resulted in an 

unprecedented financial crisis marked by excess volatility, strong risk aversion and large daily stock 

price swings. As option price changes tend to be an amplification of stock price movements, “tail 

events” in equity markets can induce extreme option price levels. Typically, put option premiums 

increase substantially as investors purchase insurance for their stock portfolios. Also, during market 

crises, high volatility increases the price of call options. These intense fluctuations lead to a market 

regime shift which makes it very challenging to select an appropriate option pricing model. 

In response to these issues, the traditional Black-Scholes option pricing model [1] has been 

abandoned in favor of models that incorporate both stochastic volatility and jumps components [2]-

[4]. However, jump diffusion models do not sufficiently describe the systematic variations in option 
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prices. Accordingly, alternative models that include jumps to the volatility process have been 

developed.  

Research concludes that stochastic volatility (SV) models are dominated by stochastic volatility 

random jump (SVJ) models in out-of-sample pricing exercises. In general, parametric option pricing 

literature reveals that the SV, SVJ, and stochastic interest rate (SI) models improve upon the basic 

Black-Scholes model with equity indices [5]. Essentially, a flexible distributional structure and the 

volatility variability property of the SV model control for the level of skewness and the excess 

kurtosis; however, these features are insufficient to explain discontinuous jumps and crashes. SVJ 

models present an extension of SV models as they internalize the jumps and crashes and account for 

the skewness and high kurtosis. This leads to more accurate short to medium term option pricing. 

For example the SI, SV and SVJ models have been shown to significantly improve the pricing 

accuracy of the Black-Scholes model for the medium to long term options, while they exhibit some 

moneyness-related biases for the short-term options [5]. 

The observed biases with parametric models have motivated the development of more complex 

semi-parametric and non-parametric option pricing models. For example, the out-of-sample 

performance of an artificial neural network (NN) model was compared to the SVJ, SI and SV 

parametric approaches for the S&P 500 stock market index over the 1989-1991 data span [9]. The 

comparison concludes that the NN pricing model with the GARCH (1, 1) volatility dominates all 

parametric models. Some other important contributions in this respect are the mixture of 

distributions model by Melick and Thomas [11] and the semi-parametric estimator by Ait-Sahalia 

and Lo [10]. These models have shown sizable improvements in option pricing accuracy compared 

to the Black-Scholes model; however, their out-of-sample pricing is inferior to non-parametric 

modular neural network (MNN) models [12]. Some recent non-parametric approaches also include 

the affine jump-diffusion models [14] and the normal inverse Gaussian models [13], [22]. More 

recently, fuzzy logic has been shown to be very useful for option pricing [15] and [16]. Finally, 

entropy-based option pricing models are a worthy, yet relatively unexplored, area [17], [18].1  

Typically, non-parametric models, or the so-called data-driven approaches, offer superior pricing 

performance relative to parametric models due to the restrictive cumulative normal functional 

shapes used by parametric benchmarks. In contrast, non-parametric models provide flexibility by 

allowing a variety of cumulative distributions such as the sigmoidal function [8], the generalized 

hyperbolic class [19] and a q-Gaussian [17]. These flexible functional forms effectively 

accommodate jumps, non-stationarity, and negative skewness and kurtosis. The success of non-

 
1 Excellent reviews of the option pricing literature can be found in Garcia et al. [4] and Renault [21]. 
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parametric option pricing models can also be explained by their adaptive learning capabilities, 

considering that models such as NN are trained to generalize in the out-of-sample data [9].  

Notwithstanding the effectiveness of non-parametric models, smoothing a curve and achieving 

stability in the out-of-sample performance can be a challenging task. This is particularly the case 

during the periods of market booms and crashes. In such situations, the very advantages of non-

parametric models over their parametric counterparts may contribute to their poor out-of-sample 

performance. Specifically, when a non-parametric model is estimated (trained) in-sample, it is 

based on historical data, preferably from the recent history.  

Suppose the current market is experiencing a crash. Option pricing in such an episode will be 

based on variables estimated from a different market regime. Put differently, a non-parametric 

model is expected to price options from the crisis regime based on the information (data) collected 

during stable market conditions. This regime shift may be detrimental to the out-of-sample 

performance of non-parametric methods. Therefore, a parsimonious parametric model that is a pre-

specified non-linearity whose shape does not depend on the in-sample data may be more 

appropriate. For example, out-of-sample pricing inaccuracy is found when the NN model was 

estimated based on the first two quarters and tested on the last quarter of 1987 [8]. Similar 

observations were reported for the 1987 regime shift [4], [12] and [16]. For instance, risk-neutral 

distributions recovered from option prices before and after the crash of 1987 are shown to be 

fundamentally different [2]. In the period before the crash, both the risk neutral and the actual 

distributions are roughly lognormal, whereas following the crash, the risk-neutral distribution 

becomes left-skewed and leptokurtic.  

A possible explanation for the regime shift is a change in the risk aversion of an average investor. 

In the same vein, another interpretation of this structural change is based on jumps and learning 

[23]. The idea is that prior to the 1987 crash, investors attribute a very low probability to extreme 

jumps, but, after it takes place, the investors update their beliefs about the likelihood of future 

jumps, which increases the intensity of the market crash. This leads to a stark regime shift in the 

S&P 500 index option prices. 

This paper proposes a novel approach to the pricing of options during the late 2008 financial 

crisis regime shift. Our model combines an MNN model and the fuzzy learning vector quantization 

(FLVQ) algorithm to classify the S&P 500 stock market index options across the maturity and 

moneyness ranges. The FLVQ algorithm relies on a Kohonen unsupervised NN and fuzzy logic c-

means clustering. This methodology produces a set of ‘intelligent’ boundaries between the modules 

of an MNN model where each module represents a particular market regime. Such classification 

enables a smoother transition from the training, pre-crisis data to the crisis regime and, thus, 
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improves the model’s generalization ability. As a result, the model exhibits outstanding out-of-

sample pricing accuracy when compared to competing models that largely fail to account for the 

structural changes in last quarter of 2008. Our findings emphasize the pitfalls of employing 

heterogeneous data for training and testing of non-parametric models. Sometimes referred to as 

“spatial crosstalk” [24], this problem may lead to slow convergence and poor function 

approximation. 

The structure of the article is as follows: Section II explains the MNN-FLVQ methodology; 

Section III explains the data and Section IV presents the results of our out-of-sample option pricing 

exercises. Section V concludes and suggests extensions of the current approach. 

  

II. MNN-FLVQ MODEL 

The basic idea of the MNN-FLVQ model is the fact that an arbitrarily complex model explaining a 

financial signal is a combination of mutually interlinked sub-models that process certain aspects (i.e., 

regimes) of a financial signal of interest. The FLVQ algorithm is used for classification of the 

regimes into clusters (or modules) that are then processed by the MNN model. 

 

A. MNN Pricing Model 

To explain the MNN part of the MNN-FLVQ model, first, we will assume that a function of two 

variables ct (ct = f(x1t,x2t) + et) is driven by different functions defined over known domains of xlt 

(l=1,2), where t denotes the time index. Namely, function f(x1t,x2t) can be written as a linear 

combination of functions c1t,c2t,...,cMt as follows [7], [25]: 

 

1 2 1 1 1 2 1 2

1 2
1

( , ) ( , ) ... ( , )

( , )

t t t t t M Mt t t

M

k kt t t
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x x w c x x w c x x

w c x x





  

  (1) 

This function can be approximated by an MNN. A meaningful decomposition of the function 

f(x1t,x2t) would be to approximate it locally by M modules c1t,c2t,...,cMt and then to sum the output of 

each module, while applying the appropriate weights w1,w2,...,wM. In this paper, we apply a FLVQ 

partitioning approach that sets only one wi = 1, while all other wk = 0 for ki, k=1,…,M. This can be 

viewed as a “crude partitioning” of the input space, i.e., the weights are redistributed to only one 
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module at the time. In other words, after the FLVQ algorithm determines the membership of each 

input observation, there is no interaction among modules, i.e., the regimes are distinct and partial 

memberships are not considered [Fig. 1].  

 

 

 

Fig. 1. MNN-FLVQ model architecture. 

Notes: After the FLVQ algorithm determines the membership of each input observation, the 

predictions are generated by the MNN model that activates one of its neural network modules 

(NN1,…,NNM).  

 

 

We specify modules and weights using the stock-price-to-strike-price ratio (St/K) and time-to-

maturity () criteria. The modules are feedforward (backpropagation) NNs and are in general 

estimated as 
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In our case, s=4 (i=1,2,3,4) and qk is the number of hidden nodes for the kth module. The single 

hidden and the output layers of the modules are characterized by two flexible classes of non-

linearities: k and gk, respectively. The backpropagation learning algorithm requires continuous 

differentiable non-linearities. The types used in this paper are the sigmoid logistic or hyperbolic 

tangent functions in the hidden layer, and the linear function in the output layer. kij and kj denote 
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appropriate connection weights between the adjacent layers for the modules. Subscripts 0 for  and  

stand for NN biases. 

The option pricing formula for the S&P 500 index call options is defined as in [8], with two 

additional inputs: 

Ct =  (St, K, rt, t,), (3) 

where Ct is the call option price, St is the price of the underlying asset, K is the strike price, t is the 

volatility of the underlying asset, rt is the interest rate, and  is the time to maturity (number of 

days). Assuming the homogeneity of degree one of the pricing function  with respect to St and K, 

one can write the option pricing function as follows: 

 

    
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There is also a technical reason for dividing by the strike price (K) since the process St is non-

stationary while the variable St/K is stationary. This paper uses (4) for the non-parametric (MNN) 

model estimation. 

 

B. FLVQ Classification Algorithm 

The FLVQ algorithm belongs to the class of batch unsupervised learning methods [26]. The FLVQ 

algorithm represents a combination of the weight adaptation rule used in the Kohonen unsupervised 

neural network and the fuzzy set membership function proposed by the batch clustering fuzzy c-

means (FCM) algorithm. In comparison to similar clustering methods, the main advantages of the 

FLVQ algorithm are: 1) smaller number of input (user-defined) parameters is required, 2) less 

frequently trapped in local minima, and 3) final solution is not affected by the order of the input data 

sequence. The clustering process of the FLVQ algorithm is based on the assumption that each data 

class may contain several clusters defined by their representative points called prototypes. In general, 

the algorithm contains two phases: the initialization of the prototype coordinates of the clusters 

(prototype generation) and the improvement of classification error by adapting the prototypes’ 

coordinates (prototype adaptation). 

The FLVQ is a self-organizational, non-sequential and competitive clustering algorithm. Using the 

training data, after the initial number of classes and prototypes are defined, for each input 
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observation from the training set, the density of distribution of other input data in its neighborhood is 

determined from the FCM algorithm. The output of this algorithm represents the coordinates of the 

data with the highest density, which are adopted as the initial values of the prototypes. 

Classes that should be extended with new prototypes are identified in an iterative process. Those 

classes are considered to have the largest number of misclassified data. In other words, if an input 

pattern has the nearest prototype from the same class it is correctly classified and vice-versa. In each 

iteration, a partition matrix U of the current prototypes is calculated by: 
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(5) 

 

where N is the number of observations in the training data, K is total number of prototypes, xj is the 

jth input pattern from the training set, C is the matrix of prototypes coordinates, d(xj(e),Ck(e)) is the 

Euclidean distance between jth input pattern and the kth prototype in each training (iteration) epoch e 

and the weighting exponent m(e) is called the “degree of fuzziness” in epoch e. 

The degree of fuzziness m = m(e) is monotonically decreasing with respect to the processing time 

e, i.e., the number of training epochs: 
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where m0 and mf are the initial and final values of the degree of fuzziness m, whose values are 

limited by the heuristically determined constraint: 7 > m0 > mf > 1.1. Reference [26] shows that this 

range is appropriate for a monotonically decreasing FLVQ algorithm. More specifically, these limits 

prevent numerical instability that may arise when values of m are close to 1 or are very large (i.e., 

when m tends to infinity). Parameter emax determines the maximum number of epochs. 

The coordinates of prototypes are modified using FLVQ learning rule given by following 

expression: 
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where i,j (e) is the learning rate of the ith prototype in epoch e. This learning factor is set by: 
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Equations (5)-(8) are repeated until the given number of prototypes K is reached. 

Finally, in the prototype adaptation phase the prototypes’ coordinates are modified. The key parts 

of the algorithm are (7) and (8), where the elements of the partition matrix U and the coordinates of 

the prototypes Ci are updated. Based on the distances among all input patterns and the current 

position of the prototypes, new coordinates of the prototypes are calculated in each iteration. The 

parameter m(e) and current epoch e determine the prototype’s neighborhood, while only patterns 

belonging to same class are considered. After this step, the total number of prototypes, as well as 

their number per each class are not changed. In the end, after emax iterations, the best prototype 

coordinates, i.e., the prototypes with the highest number of correctly classified patterns are recorded 

and assigned to the classes. 

 

C. FLVQ Parameters 

We experimented with training data from the first (last) two quarters of 2008 and the validation 

data from the third (second) quarter representing the trial testing data. The most accurate pricing for 

the third (second) quarter data was obtained by using ten classes and fifty prototypes (with allowed 

maximum of 6 prototypes per class). These input parameters are then used in pricing the fourth (first) 

quarter options (true out-of-sample data). The initial and final values of the degree of fuzziness are 

m(0)=1.1 and m(0)=2.2, respectively. 

 

III. DATA 

The options data for 2008 were provided by DeltaNeutral and represent the daily S&P 500 index 

European call option prices, taken from the Chicago Board Options Exchange. Call options across 

different strike prices and maturities are considered. Being one of the deepest and the most liquid 

option markets in the United States, the S&P 500 index option market is sufficiently close to the 



9 
 

theoretical setting of the Black-Scholes model. Options with zero volume are not used in the 

estimation. The risk-free interest rate (r) is approximated by the monthly yield of the U.S. Treasury 

bills. The implied volatility (I) is a proprietary mean estimate provided by DeltaNeutral. 

The data for each year are divided into three parts: first (last) two quarters (estimation data), third 

(second) quarter (validation data) and fourth (first) quarter (testing data). Our first exercise prices 

options on the fourth quarter of the year that includes the market crisis periods. The second pricing 

exercise focuses on the performance of the models in the first quarter of each year that represents 

the out-of-sample data. To reduce the size of the data set for 2008, we also eliminated options with 

low volume (that traded below 100 contracts on a given day), and focused only on the close to at-

the-money options (with strike prices between 95% and 105% of the underlying S&P 500 index). 

This resulted in 14838 observations of which 3904 were in the first quarter, 4572 were in the second 

quarter, 4088 were in the third quarter and 2274 were in the fourth quarter of 2008.  

The out-of-sample pricing performance of the MNN-FLVQ model is first compared to the well-

known benchmark – the Black-Scholes model. This model has proved to be a good pricing tool 

during the financial crisis of 1987 [8]. The Black-Scholes call prices (Ct) are computed using the 

standard formula 
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where N is the cumulative normal distribution, St is the price of the underlying asset, K is the strike 

price, is the time to maturity, r is the risk-free interest rate, and  is the volatility of the underlying 

asset’s continuously-compounded returns. The risk-free rate is approximated using the monthly 

yield of U.S. Treasury bills. 

The statistical significance of the difference in the out-of-sample (testing set) performance of 

alternative models is tested using the Diebold-Mariano test [27]. We test the null hypothesis that 

there is no difference in the mean-squared prediction error (MSPE) of the two alternative models. 

The Diebold-Mariano test statistic for the equivalence of forecast errors is given by 
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where M is the testing set size and f(0) is the spectral density of dt (the forecast error is defined as 

the difference between the actual and the forecasted output value) at frequency zero. Diebold and 

Mariano show that DM is asymptotically distributed in a N (0,1) distribution. 

 

IV. ESTIMATION RESULTS 

 

The out-of-sample pricing performance of the MNN-FLVQ is evaluated on the last quarter (Q4) 

and first quarter of 2008 (Q1). The options are also priced by using the competing models: Garcia 

and Gençay’s [6] feedforward NN model with the hint (NN with hint), the MNN model [12], and 

the Black-Scholes (BS) model [1]. The results for Q4 reveal that the MNN-FLVQ model 

statistically improves upon the BS model (Table I). Nonetheless, it is worthwhile to note that the BS 

model is remarkably accurate during the crisis period relative to the competing non-parametric 

methods. As expected, in the Q1 of 2008, the pricing ability of all approaches improves 

substantially. In particular, all three NN-based models dominate the BS model. The NN with the 

hint model is the most accurate. The statistical significance of the pricing improvements is 

confirmed by the large negative values of the DM statistics in the last row of Table I. 

TABLE I. 

PREDICTION PERFORMANCE OF THE COMPETING OPTION PRICING MODELS IN 2008 

 BS NN with 
hint  

(DM) 

MNN  
(DM) 

MNN-
FLVQ 
(DM) 

MAPE:     
Q4 0.5414 6.2910 0.3317 0.3304 
Q1 0.1382 0.6807 0.0940 0.0924 

     
MSPE:     

Q4 3.05×10−4 17.3×10−4

(4.54) 
3.51×10−4

(0.33) 
1.88×10−4 

(-1.61) 
Q1 1.50×10−4 4.17×10−5

(-6.68) 
1.08×10−4

(-1.71) 
1.05×10−4 

(-2.04) 
Notes: This table reports the out-of-sample average mean-absolute percentage error ( MAPE ) and the average mean-

squared prediction error ( MSPE ) of Garcia and Gençay’s [6] feedforward neural network model with the hint (NN with 

hint), modular neural network model [12], modular neural network-fuzzy learning vector quantization model (MNN-

FLVQ) and the Black-Scholes (BS) model [1]. The average error figures are presented as averages across ten different 

random training seeds. The pricing error for a non-parametric model with four inputs (St/K, τ, r, σ) was calculated. “Q1” 

(“Q4”) denotes that the S&P 500 Index call options were priced in the first (fourth) quarter of 2008 that was kept as out-
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of-sample observations. DM denotes the Diebold and Mariano (1995) test statistic. This test is used to assess the 

statistical significance of the MSPE forecast gains of each non-parametric model relative to the BS model. The 

minimum pricing error in each out-of-sample period is bolded. 

 

We conclude that the regime shift which took place in late 2008 limits learning and generalization 

abilities of non-parametric models and results in pricing inaccuracy. However, the ‘intelligent 

clustering’ feature of the MNN-FLVQ model overcomes the problem that arises in non-parametric 

option pricing. Interestingly, being a pre-specified non-linearity, the BS model appears to be less 

sensitive to a regime shift than the NN models. This paper argues that the explanation for the 

success of the MNN-FLVQ model lies in its ability to decompose the option pricing function into a 

number of simpler sub-models (regimes) across moneyness and maturity ranges. These sub-models 

are estimated individually and each becomes activated when identified during the out-of-sample 

testing phase. 

To illustrate the accuracy of the MNN-FLVQ model, the out-of-sample predictions of ct from (4) 

and the actual (Ct/K) data for the last quarter of 2008 are plotted in Fig. 2. Despite the occasional 

extreme volatility outbursts in ct over the testing sample, the estimates follow the actual prices very 

closely. 
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Fig. 2. Data and option prices estimated by the MNN-FLVQ model. 

Notes: Out-of-sample predictions of ct (cyan, dotted line) and the actual data (red, dashed line) are 

plotted for the last quarter of 2008. First, the MNN-FLVQ model is estimated and validated using 

the data from the first three quarters of the year and, then, 2274 out-of-sample estimates of ct are 

generated. 
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V. CONCLUSIONS 

This paper proposes a novel methodology to price  S&P 500 Index options that are subject to a 

regime shift, such as options during the 2008 financial crisis. The importance of our work lies in its 

potential applicability to any other time-series or cross-sectional data that contain multiple regimes 

or structural breaks. In finance and economics, the variables of interest may include exchange rates, 

equity prices, interest rates and derivative prices. Therefore, with this contribution, we hope to 

motivate further research in this area that holds valuable implications for financial risk management 

and government policy.  

There are two possible extensions of the MNN-FLVQ model that we plan to pursue in our future 

research. The first one concerns utilizing more complex clustering and classification methodologies 

such as Gaussian mixture models, genetic algorithms and ant colony optimization. Hence, 

improving the ability of the model to differentiate among heterogeneous option types (or market 

regimes) represents the key future research direction. For this purpose, in addition to the two 

present classification criteria (moneyness and maturity), the model can also be provided with more 

option-specific information. For instance, the interest rate criterion that relies on risk-free interest 

rates that match the maturity of individual options could be introduced. Likewise, option open 

interest might represent another informative variable for detecting regime shifts. 
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